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ABSTRACT

Aim We explore the utility of newly available optical and microwave remote

sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS)

and QuikSCAT (QSCAT) instruments for species distribution modelling at

regional to continental scales. Using eight Neotropical species from three

taxonomic groups, we assess the extent to which remote sensing data can improve

predictions of their geographic distributions. For two bird species, we investigate

the specific contributions of different types of remote sensing variables to the

predictions and model accuracy at the regional scale, where the benefits of the

MODIS and QSCAT satellite data are expected to be most significant.

Location South America, with a focus on the tropical and subtropical Andes

and the Amazon Basin.

Methods Potential geographic distributions of eight species, namely two birds,

two mammals and four trees, were modelled with the maxent algorithm at 1-km

resolution over the South American continent using climatic and remote sensing

data separately and combined. For each species and model scenario, we assess

model performance by testing the agreement between observed and simulated

distributions across all thresholds and, in the case of the two focal bird species, at

selected thresholds.

Results Quantitative performance tests showed that models built with remote

sensing and climatic layers in isolation performed well in predicting species

distributions, suggesting that each of these data sets contains useful information.

However, predictions created with a combination of remote sensing and climatic

layers generally resulted in the best model performance across the three

taxonomic groups. In Ecuador, the inclusion of remote sensing data was

critical in resolving the known geographically isolated populations of the two

focal bird species along the steep Amazonian–Andean elevational gradients.

Within remote sensing subsets, microwave-based data were more important than

optical data in the predictions of the two bird species.

Main conclusions Our results suggest that the newly available remote sensing

data (MODIS and QSCAT) have considerable utility in modelling the

contemporary geographical distributions of species at both regional and

continental scales and in predicting range shifts as a result of large-scale land-

use change.
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INTRODUCTION

A wide range of applications in biogeography, including

evolutionary (Peterson, 2001; Hugall et al., 2002; Graham

et al., 2004, 2006), ecological (Anderson et al., 2002), invasive

species (Peterson & Robins, 2003), conservation (Godown &

Peterson, 2000; Sánchez-Cordero & Martı́nez-Meyer, 2000)

and climate change studies (Berry et al., 2002; Peterson et al.,

2002; Thomas et al., 2004; but see also Buckley & Roughgar-

den, 2004; Thuiller et al., 2004; Araújo et al., 2006), rely on

information concerning the geographical distribution of

species and their environmental requirements. In species

distribution modelling, which is often used in these studies,

two sets of input data are required: occurrence data and spatial

information on the environmental characteristics of the species

habitats. Whereas significant work has been done on the

complexity and robustness of the statistical methodology (e.g.

Elith et al., 2006) as well as on the quality and quantity of

occurrence data (e.g. McPherson et al., 2004; Segurado &

Araújo, 2004; Hernandez et al., 2006), relatively little attention

has been paid to the environmental data sets used in ecological

modelling. Here we explore the use of an array of new satellite

data, which have seldom been used to predict species

distributions and are often poorly understood by modellers.

The availability of satellite observations of the Earth’s

surface in the past three decades has heralded a new era in the

ecological modelling of species habitats. Direct measurements

of the Earth’s hydrological and biophysical characteristics, its

geological features and its climate from space have provided

new data layers with spatial and temporal resolutions relevant

to landscape-scale habitat characteristics and ecological pro-

cesses (Gould, 2000; Nagendra, 2001; Turner et al., 2003). The

optical portion of the electromagnetic spectrum acquired from

space-borne passive sensors, such as the Advanced Very High

Resolution Radiometer (AVHRR), is most commonly used to

infer vegetation characteristics. Green leaves harbour pigments,

notably chlorophyll, that absorb strongly at blue and red

wavelengths, whereas a lack of such absorption in the near-

infrared results in strong scattering. A popular measure that

captures this unique spectral response is the Normalized

Difference Vegetation Index (NDVI); sometimes referred to as

a measure of ‘greenness’, it is computed through the normaliz-

ed difference in surface reflectances at near-infrared and red

wavelengths. NDVI, or similar vegetation indices, are among

the few satellite variables that have been used extensively in

ecological niche modelling (e.g. Fuentes et al., 2001; Osborne

et al., 2001; Luoto et al., 2002; Zinner et al., 2002; Parra et al.,

2004; Roura-Pascual et al., 2006).

Through the recent launch of the NASA satellites Terra and

Aqua with the Moderate Resolution Imaging Spectroradiom-

eter (MODIS) on board, global optical measurements of

vegetation at finer spatial resolution (250–500 m) with high

revisit times (1–2 days) and improved data quality have

become widely available (Justice et al., 1998). In particular, the

use of narrower spectral bands from the visible to middle

infrared and advances in atmospheric corrections in the

MODIS era have minimized the impact of water vapour and

aerosol effects, which were problematic in previous satellite

missions (Vermote et al., 1997). Furthermore, improvements

in retrieval techniques that translate the remotely sensed

surface reflectances to more interpretable biophysical param-

eters have led to a number of advanced MODIS vegetation

products. Among these, and applied in this study, are the leaf

area index (LAI), defined as the one-sided projected green leaf

area per unit ground area (Knyazikhin et al., 1998; Myneni

et al., 2002), and the vegetation continuous field (Hansen

et al., 2002) products as measures of vegetation density,

seasonality and percentage of tree cover. Although the

application of optical satellite data over areas with persistent

cloud cover remains a challenge, the frequent revisit time of

MODIS at high spatial resolution allows circumvention of this

basic physical limitation to some extent through appropriate

spatial and temporal compositing.

In addition, microwave remote sensing data from active

space-borne scatterometers [e.g. SeaWinds on board of

NASA’s QuikSCAT (QSCAT)] at relatively high spatial

(2.25 km) and temporal (3 days) resolutions with global

coverage are also becoming widely available. Microwave

radiation probes the dielectric properties of land and, thus, is

particularly sensitive to surface moisture. Furthermore, micro-

wave radiation is sensitive to surface roughness, and hence its

interpretation is somewhat more complex than that of optical

data. However, recent studies have shown that the intensity of

the radar backscatter over vegetated regions relates to biomass

density and forest structure (Saatchi et al., 2000, 2007; Long

et al., 2001). In addition, microwave measurements are less

sensitive to cloud cover and penetrate deeper into the canopy,

leading to a better discrimination of distinct forest architec-

tures over densely forested regions. Taken together, the newly

available optical and microwave remote sensing data layers

provide additional information on surface parameters, such as

vegetation density and seasonality as well as canopy moisture

and roughness, with great potential to describe the ecology and

geographical distributions of species.

In this study, we tested the utility of newly available remote

sensing data for distribution modelling from regional to

continental scales for a suite of species with different ecological

characteristics. At these scales, the remote sensing data act as

surrogates for land-cover variables and, hence, are closely

related to climate variations (Egbert et al., 2002). In total, we

modelled the distributions of eight Neotropical species, namely

two birds, two mammals and four trees, over the South

American continent at 1-km spatial resolution. Because the

usefulness of remote sensing data in distribution modelling

may be dependent on a species’ ecology (Hernandez et al.,

2006; McPherson & Jetz, 2007), these species were chosen to

capture a variety of ecological traits such as range size and

habitat specificity. Specifically, for widespread species in

relatively homogeneous climates, such as throughout the

Amazon basin, we expect remote sensing data to be particu-

larly useful in providing additional constraints on the species

ecological niches. In contrast, for Andean species that reside in
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narrow climate regimes, the benefit of remote sensing data may

be more limited. Furthermore, the utility of remote sensing

data is likely to be scale-dependent, increasing in importance

from continental scales where a broad species range is depicted

to regional and landscape scales where vegetation and land-

scape features need to be incorporated.

Models were developed using bioclimatic data from the

WorldClim data base (Hijmans et al., 2005) and remote

sensing data in isolation and combined, and tested by

analysing the area under the receiver operating characteristic

curve (AUC). For two bird species, the wedge-billed wood-

creeper (Glyphorynchus spirurus) and the speckled humming-

bird (Adelomyia melanogenys), with the former showing a very

widespread distribution throughout the rainforests of the

Amazon basin and Andean foothills and the latter a very

narrow distribution in the Andean montane forests, we

provide a detailed analysis on model performance. This

includes omission tests at selected thresholds, evaluations of

model predictive power as well as of the contributions of

various environmental variables to the predictions, and visual

inspections of the predicted maps. Given that the greatest

benefit of the newly available optical and microwave remote

sensing layers is expected at the regional level, we also provide

an in-depth analysis of the predictions for the two focal bird

species in Ecuador, a country with highly variable microcli-

mates and ecological gradients along the steep slopes of the

Andes.

DATA AND METHODS

Species and environmental data

Study species

For this study, point localities for eight Neotropical species

were obtained. The species analysed were two common South

American birds that were selected for further detailed analysis,

the wedge-billed woodcreeper (Glyphorynchus spirurus) and

the speckled hummingbird (Adelomyia melanogenys), as well as

two Neotropical mammals and four Amazonian trees, which

have been used in recent distribution modelling studies

(Phillips et al., 2006; Saatchi et al., 2008). In the following,

brief descriptions of ecological characteristics are given for

each of the selected species, with more detail for the two focal

bird species. Additional information about the six non-focal

species is provided in the respective references.

Glyphorynchus spirurus is a widespread Neotropical bird

species (length, 130–160 mm; mass, 10.5–21 g), which is

frequent in the understorey of lowland and submontane

tropical forests throughout the Amazon basin and Andean

foothills (Del Hoyo et al., 2003). There are 13 subspecies of

G. spirurus known in the region, with ranges spanning from the

southern Amazon basin to south-eastern Mexico, and along the

Atlantic coastal forests of Brazil (Del Hoyo et al., 2003).

Adelomyia melanogenys, one of the smaller species of South

American hummingbirds (length, 85–90 mm; mass, 4.2–

4.9 g), is found in wet to humid montane forests along the

Andean slopes at elevations ranging from 1000 to 3000 m

(Fjeldså & Krabbe, 1990; Del Hoyo et al., 1999). Following the

orientation of the Andes, this species occupies an impressive

north-to-south range from northern Venezuela to north-

western Argentina. Seven subspecies of A. melanogenys are

recognized, occupying various regions of the northern Andes

(Del Hoyo et al., 1999).

The localities of four Amazonian tree species were taken

from a recent distribution modelling study on Amazon tree

diversity (Saatchi et al., 2008). The species analysed were

jacareuba (Calophyllum brasiliensis; 88 point localities), andi-

roba (Carapa guianensis; 73), balatá (Manilkara bidentata;

127), and ucuúba (Virola surinamensis; 113). The four trees

differ markedly in habitat specificity and range size (Saatchi

et al., 2008). Amongst them, C. brasiliensis shows the widest

distribution throughout northern South America and is found

in the rain forests of the Amazon basin and the Andean

lowlands up to elevations of 1500 m, as well as in the

woodlands of south-eastern Brazil. Carapa guianensis, on the

other hand, has the most specific habitat requirements and is

found along streams, in the periodically inundated swamp

forests, and in upland forests along the rivers of the Amazon

Basin, and at elevations ranging from shorelines to 1200 m.

Manilkara bidentata is quite common throughout the rain

forests of the Amazon basin and along the coastal regions of

northern Brazil and Guyana, but is restricted to lower

elevations. Virola surinamensis is found in swampy, fertile

and periodically inundated riverbanks, in Amazonian várzea

forests, and in degraded and secondary forests. Compared with

M. bidentata, its range is more restricted to the northern

Amazon basin.

From Phillips et al. (2006), we obtained point localities for

two Neotropical mammals: the brown-throated three-toed

sloth, Bradypus variegatus (77 point localities), and a small

montane murid rodent, Microryzomys minutus (85). Bradypus

variegatus is widely distributed in the deciduous, evergreen and

montane forests of the Amazon basin and in the vicinity of the

tropical and subtropical Andes. Its geographic range extends

from Honduras to northern Argentina. Microryzomys minutus,

in contrast, shows a much narrower distribution throughout

the tropical and subtropical Andean wet montane forests, with

elevational ranges from 1000 to 4000 m and a geographic

extent from Venezuela to Bolivia.

In the case of the two focal bird species, we obtained precise

point-locality data by sampling each bird species using mist

nets during multiple field surveys throughout Ecuador

between 1999 and 2006 (22 sites for G. spirurus, 26 for

A. melanogenys). In addition, we acquired occurrence data for

these two bird species from other sources (see Table S1 in

Supplementary Material) leading to a total of 78 unique

georeferenced locations for G. spirurus and 180 for A.

melanogenys (Fig. 1). In compiling this data set, we screened

the records to include only georeferenced points obtained from

recent surveys (within the last 10 years), thereby ensuring a

broadly overlapping time frame with the acquisition of the
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remote sensing data. The modelling study was concentrated on

the distribution of each of the two bird species pooled across

subspecies because of the limited number of occurrences.

Climate data

A series of bioclimatic metrics were obtained from WorldClim

version 1.4 (Hijmans et al., 2005). These metrics are derived

from monthly temperature and rainfall climatologies and

represent biologically meaningful variables for characterizing

species range (Nix, 1986). Eleven temperature and eight

precipitation metrics were used, expressing spatial variations in

annual means, seasonality and extreme or limiting climatic

factors. The monthly climatologies were developed using long

time series of a global network of weather stations from

various sources, such as the Global Historical Climatology

Network (GHCN), the United Nations Food and Agricultural

Organization (FAO), the World Meteorological Organization

(WMO), the International Center for Tropical Agriculture

(CIAT), and additional country-based station networks. The

station data were interpolated to monthly climate surfaces at

1-km spatial resolution using a thin-plate smoothing spline

algorithm with latitude, longitude, and elevation as indepen-

dent variables (Hijmans et al., 2005).

Remote sensing data

Remote sensing data obtained from a variety of satellite sensors

provided measurements of environmental variables directly

related to species habitat characteristics (Turner et al., 2003).

We compiled a large data set covering a diverse range of

surface parameters, namely vegetation density and seasonality,

moisture, roughness, and topography.

To quantify spatial and temporal vegetation patterns, we

used the MODIS 8-day LAI product (Myneni et al., 2002)

derived from atmospherically corrected MODIS surface

reflectances (Vermote et al., 1997) over the 5-year period

2000–2004. The accuracy of the MODIS LAI product has been

evaluated against ground measurements of leaf area in a host

of vegetation types across the globe (see online supporting

information in Myneni et al., 2007), and was generally found

to be exact within LAI values of roughly 0.6. For each year, we

created monthly composites by averaging the 8-day LAI

product. Even though the MODIS algorithm is equipped with

improved cloud masking (Platnick et al., 2003), effects from

subpixel cloudiness on LAI estimates over areas with persistent

cloud cover, such as within the Amazon basin and along the

Amazonian–Andean elevational gradients, were occasionally

observed. To reduce these effects along with any natural

interannual variability present in the data, we created monthly

climatologies by averaging the 5 years of data (2000–2004).

The climatological monthly composites were then used to

generate five metrics: annual maximum (Fig. 2a), minimum,

mean, standard deviation, and range (difference of maximum

and minimum). These LAI metrics provide spatial information

on net primary productivity and vegetation seasonality.

We also included the MODIS-derived vegetation continuous

field (VCF) product as a measure of the percentage of tree

canopy cover within each 500-m pixel (Hansen et al., 2002).

This data set was produced from time-series composites of

MODIS data of the year 2001. Preliminary validation results

over the conterminous United States (Hansen et al., 2002)

suggest that the VCF product can reliably separate more open

(e.g. shrublands, savannas), deforested and, to some extent,

fragmented areas from those of closed forests (Fig. 2b). For

this study, the 500-m native tree cover data were aggregated to

1 km.

In addition to these optical remote sensing data, we

included microwave QSCAT data available in 3-day compos-

ites at 2.25-km resolution (Long et al., 2001). The 3-day data

(a) Glyphorynchus spirurus (b) Adelomyia melanogenys

Figure 1 Point localities for (a) the

wedge-billed woodcreeper (Glyphorynchus

spirurus; 78 records) and (b) the speckled

hummingbird (Adelomyia melanogenys; 170

records) utilized in this study.
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Figure 2 A selection of the remote sensing data layers used in this study. The panels depict (a) MODIS LAI (leaf area index) annual

maximum, (b) MODIS percentage tree cover, (c) QSCAT annual mean, and (d) mean elevation from SRTM.
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of the year 2001 with complete data coverage were used to

create average monthly composites at 1-km resolution and

then further processed to produce four metrics that included

annual mean and standard deviation of radar backscatter with

horizontal and vertical polarizations. QSCAT backscatter

measurements are calibrated with high accuracy [c. 0.1 decibel

(dB); Tsai et al., 1999], and the long-term averages ensure the

reduction of any possible high-frequency noise from compos-

iting the data or from atmospheric disturbances (e.g. rain

events) while preserving information on the backscatter

variability. The QSCAT radar measurements, at wavelengths

of c. 2 cm, are sensitive to surface canopy roughness, surface

canopy moisture, and other seasonal attributes, such as

deciduousness of vegetation (Frolking et al., 2006). For low-

density vegetation cover, such as woodlands, shrublands, and

grassland savannas, measurements at various polarizations

correlate positively with vegetation biomass and surface

moisture (Saatchi et al., 2007). For areas covered with dense

forests, the QSCAT data are sensitive to large-scale variations

in canopy roughness and moisture conditions (Fig. 2c).

Finally, we used the Shuttle Radar Topography Mission

(SRTM) digital elevation data, aggregated from the native

90-m resolution to 1 km (Fig. 2d). In addition to mean

elevation, the standard deviation based on the 90-m data was

included as an indicator of surface ruggedness.

Overall, 10 continuous remote sensing data layers (5 LAI, 4

QSCAT, 1 VCF) and the two elevation data layers (mean and

standard deviation) representing various vegetation and land-

scape features were included in this analysis. In Table 1, we

present a brief overview of the original remote sensing

products/data from which the various metrics were derived,

along with corresponding ecological interpretations, native

spatial resolution and orbiting frequency.

Data reduction

To facilitate interpretation of the environmental information

and how it relates to a species’ habitat, we reduced the total of

31 data layers (19 WorldClim + 10 remote sensing + 2 SRTM)

to a set of less correlated variables. Covariance within the

subsets of climate and remotely sensed variables was estimated

by computing cross-correlation matrixes based both on the

birds’ point localities and on 1000 points randomly drawn

from the northern half of South America in order to capture

both covariance at local levels close to the bird vicinities and

more general covariance over larger spatial scales. Various

criteria were used to decide which layers of correlated pairs to

retain for further analysis (with Pearson’s correlations of the

order of 0.9 or larger). These included keeping layers that are

more commonly used in distribution modelling (WorldClim),

that exhibit larger contrast/variance over the study area

(QSCAT), and that have the highest data quality (LAI).

For the WorldClim metrics, significant correlations among a

number of the original 19 data layers were observed, and a

subset of nine bioclimatic variables was selected for further

analysis, namely annual mean temperature, mean diurnal

temperature range, temperature seasonality, minimum temper-

ature of coldest month, maximum temperature of warmest

month, annual mean rainfall, rainfall seasonality, rainfall of

coldest quarter and rainfall of warmest quarter. High correla-

tions were also evident among the five LAI metrics and the

four QSCAT metrics that were produced for this study, and,

based on the criteria given above, we selected the LAI annual

maximum (Fig. 2a) and LAI annual range layers as well as the

QSCAT annual mean (Fig. 2c) and QSCAT seasonality layers

with horizontal polarization for further analysis.

As a result, the final reduced data set used in this study

converged to a total of 16 environmental layers: nine climate

(five temperature and four rainfall), two LAI, two QSCAT, two

topography (mean and standard deviation), and one tree-cover

layer. It should be noted that the model algorithm (maxent)

used in this study is largely robust to covariance among

variables, and that data reduction was performed mainly to

improve interpretation.

Modelling approach

maxent

We used the maxent algorithm (version 2.1), which has been

very recently introduced for the modelling of species distribu-

tions (Phillips et al., 2006). maxent is a general-purpose

algorithm that generates predictions or inferences from an

incomplete set of information. The maxent approach is based

on a probabilistic framework. The main assumption is that the

incomplete empirical probability distribution (which is based

Table 1 Overview of the remote sensing data sets used in this study. For each remote sensing data layer, native spatial and temporal

resolutions as well as an ecological interpretation are given along with the respective model scenarios in which these data layers were

included. Model scenario acronyms refer to model runs with remote sensing and elevation data (RSE), climate and elevation data (CLIME),

and climate, remote sensing and elevation data combined (CLIMERS).

Data record Instrument Ecological variable Resolution Scenario

Leaf area index (LAI) MODIS Vegetation density, seasonality and net primary productivity 1 km and 8 day RSE, CLIMERS

Percentage tree cover MODIS Forest cover and heterogeneity 500 m RSE, CLIMERS

Scatterometer-backscatter QSCAT Surface moisture and roughness (forest structure), seasonality 2.25 km and 3 day RSE, CLIMERS

Digital elevation model SRTM Topography and ruggedness 90 m RSE, CLIME

CLIMERS
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on the species occurrences) can be approximated by a

probability distribution of maximum entropy (the maxent

distribution) subject to certain environmental constraints, and

that this distribution approximates a species’ potential geo-

graphic distribution (Phillips et al., 2006).

Like most maximum-likelihood estimation approaches, the

maxent algorithm a priori assumes a uniform distribution

and performs a number of iterations in which the weights

associated with the environmental variables, or functions

thereof, are adjusted to maximize the average probability of

the point localities (also known as the average sample

likelihood), expressed as the training gain (Phillips, 2006).

These weights are then used to compute the maxent

distribution over the entire geographic space. Consequently,

this distribution expresses the suitability of each grid cell as a

function of the environmental variables for that grid cell. A

high value of the function (in units of cumulative probabil-

ity) for a particular grid cell indicates that the grid cell is

predicted to have suitable conditions for the species in

question (Phillips, 2006).

maxent has several characteristics that make it highly

suitable for the task of modelling species ranges (Phillips

et al., 2006). These include a deterministic framework; the

ability to run with presence-only point occurrences; a high

performance with few point localities (Hernandez et al.,

2006); better computing efficiency, enabling the use of

large-scale high-resolution data layers; continuous output

from least to most suitable conditions; and the ability to

model complex responses through a number of distinct

feature classes (e.g. functions of environmental variables).

As a consequence, in a recent large model intercompari-

son project with 15 other algorithms, maxent’s perfor-

mance was generally rated among the highest (Elith et al.,

2006).

There are several aspects of maxent (2.1) that support the

interpretation of the model results. For example, maxent

has a built-in jackknife option through which the impor-

tance of individual environmental data layers can be

estimated. It also provides response curves showing how

the prediction depends on a particular environmental

variable (Phillips, 2006). For all model runs in this study,

we used the maxent default settings for regularization and

in selecting the feature classes (functions of environmental

variables). These include linear, quadratic, product, threshold

and hinge features, depending on the number of point

localities (Phillips, 2006).

Scenarios and quantitative analysis

To evaluate the merit of the set of newly available satellite

data in species distribution modelling, we ran maxent with

climate and satellite layers in isolation and combined. Three

scenarios were evaluated: (1) maxent runs with climate and

elevation data only (CLIME); these include the five temper-

ature, four precipitation and two topography layers from the

final reduced subset (see above), (2) remote sensing and

elevation data only (RSE), with two QSCAT, two LAI, one

tree-cover and two topography layers from the reduced

subset, and (3) climate, elevation and remote sensing data

combined (CLIMERS) using all 16 layers of the reduced

subset (see Data reduction). For visualization, predicted maps

were generated with the three predictor sets CLIME, RSE and

CLIMERS using all available point localities of a given

species. The corresponding maps for the six non-focal species

(two mammals and four trees) are provided in Figs S1–S6 in

the Supplementary Material.

The spatial accuracy of the predictions was tested following

Phillips et al. (2006). For all eight species we created 10

random data partitions with 60% of the point localities

assigned for training and 40% for testing, and ran the three

scenarios with each of these 10 data partitions. Model

performance was then tested across all thresholds (threshold-

independent) and, in the case of the two focal bird species, at

fixed thresholds (threshold-dependent).

In the threshold-dependent case, we evaluated extrinsic

omission rates, defined as the fraction of test localities that fall

into pixels outside the predicted area, both at constant

proportional predicted area, defined as the fraction of all the

pixels that are predicted as suitable for a species, and at the

‘balance’ threshold. Whereas the former allows a direct

comparison of the extrinsic omission rates among the three

model scenarios, the latter balances two measures of quality of

a binary prediction, namely intrinsic (training) omission and

proportional predicted area (Phillips, 2006). For all model

scenarios and data partitions, we tested whether test points fell

into areas predicted present more often than expected at

random by applying a one-tailed binomial test on the extrinsic

omission rate and proportional predicted area (Anderson

et al., 2002). In the constant proportional predicted area case,

a two-tailed Wilcoxon signed rank test was utilized to evaluate

statistical significance in differences in overall extrinsic omis-

sion rates between the CLIME and RSE scenarios. A one-tailed

Wilcoxon signed rank test was utilized to test if decreases in

overall extrinsic omission rates in the CLIMERS scenarios

relative to those in the CLIME and RSE scenarios were

statistically significant.

In the threshold-independent evaluation, we tested the

performance of the maxent scenarios using receiver oper-

ating characteristic (ROC) analysis and pseudo-absence in

place of absence localities (Phillips et al., 2006). In this

case, the AUC is typically used as a measure of model

performance. We employed a ties-corrected one-tailed

Mann–Whitney U-test (AccuROC; Vida, 1993) to test if a

particular prediction in terms of AUC was significantly

better than random. A two-tailed Wilcoxon signed rank test

was used to test whether differences in overall AUC in the

CLIME and RSE scenarios were significant. Finally, a one-

tailed Wilcoxon signed rank test was also used to assess

whether increases in overall AUC in the CLIMERS scenarios

relative to those in the CLIME and RSE scenarios were

statistically significant at levels P < 0.005, P < 0.05 and

P < 0.2.
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RESULTS

Quantitative results

Threshold-independent tests

For all eight Neotropical species in this study, AUC values

generated using the extrinsic test data were highly statistically

significant (P < 0.001, Mann–Whitney U-test) for all model

scenarios and data partitions. This suggests that each predictor

set alone contains useful information for modelling the species’

distributions. AUC tests on model performance indicated that

for six species scenarios with climate and elevation variables

(CLIME) performed better than scenarios with remote sensing

and elevation variables (RSE), whereas for two species these

two scenarios performed equally well (Table 2). For seven

species, however, scenarios with climate, remote sensing and

elevation variables combined (CLIMERS) performed better

than the corresponding scenarios with a subset of the predictor

variables (Table 2). These results are suggestive of a generally

improved discrimination of suitable vs. unsuitable habitats

across taxonomic groups when all environmental data layers

are used in combination.

To test whether increases in model performance in the

CLIMERS scenarios were not simply an artifact of the larger

number of environmental data layers used, we performed

additional model runs with the full set of data layers within the

climate subset (19 WorldClim and 2 elevation), the remote

sensing subset (10 remote sensing + 2 elevation) and with all

environmental layers (19 WorldClim + 10 remote sensing + 2

elevation). Model performance for scenarios with reduced and

full sets of variables within the various predictor sets were

generally stable, documenting that adding more variables with

no significant new information (see also Data reduction) does

not lead to improved model performance.

Threshold-dependent tests

For the two focal bird species in this study, model performance

was also evaluated at two selected thresholds: the optimized

‘balance’ threshold and at constant proportional predicted

area. In the three model scenarios, RSE, CLIME and CLIMERS,

with 10 random data partitions, the ‘balance’ thresholds

ranged from 0.5 to 6.0 (in units of cumulative probabilities)

for G. spirurus, and from 1.5 to 4.5 for A. melanogenys. For

G. spirurus, the binary maps corresponding to these threshold

values were broadly consistent with its known distribution

(Del Hoyo et al., 2003), but for A. melanogenys these threshold

values were somewhat too low, resulting in overprediction

(Del Hoyo et al., 1999). However, to facilitate statistical

analysis in a consistent manner, we evaluated model perfor-

mance at the ‘balance’ threshold for both bird species. At the

‘balance’ threshold, the binomial test on extrinsic omission

rate and predicted area was highly significant (P < 0.001,

one-tailed) for all scenarios and data partitions.

A more detailed look at extrinsic omission and predicted

area showed that the combination of climate, remote sensing

and elevation data resulted in more accurate and spatially

more explicit predictions for both bird species (Table 3). For

G. spirurus, the CLIMERS scenario achieved the lowest overall

extrinsic omission rates with a relatively low overall predicted

area. For A. melanogenys, the situation is somewhat different.

Both the CLIME and RSE scenarios showed extrinsic omission

rates lower than those in CLIMERS, but these lower omission

rates were only realized at the cost of a notably larger overall

predicted area. Independent evidence of overprediction in the

Table 2 Comparison of model performance across all thresholds for eight Neotropical species produced in the model scenarios RSE,

CLIME, and CLIMERS (see Table 1). For each scenario, median AUC and range (brackets) calculated on extrinsic test data and based on 10

random data partitions are shown.

Birds Mammals

G. spirurus A. melanogenys B. variegatus M. minutus

RSE 0.877 (0.861–0.896) 0.975 (0.970–0.980) 0.834 (0.790–0.873) 0.976 (0.971–0.981)

CLIME 0.889 (0.865–0.909) 0.975 (0.956–0.983) 0.823 (0.779–0.875) 0.985 (0.984–0.988)

CLIMERS 0.898 (0.880–0.918) 0.978 (0.971–0.984) 0.888 (0.826–0.914) 0.984 (0.982–0.986)

Trees

C. brasiliensis V. surinamensis C. guianensis M. bidentata

RSE 0.736 (0.704–0.802) 0.805 (0.754–0.874) 0.849 (0.811–0.885) 0.837 (0.812–0.863)

CLIME 0.759 (0.715–0.780) 0.848 (0.799–0.881) 0.900 (0.881–0.927) 0.888 (0.867–0.909)

CLIMERS 0.789 (0.755–0.829) 0.851 (0.808–0.897) 0.905 (0.869–0.927) 0.900 (0.886–0.917)

To assess statistical significance in the comparison of model performance between the CLIME and RSE scenarios, a two-tailed Wilcoxon signed rank

test was used, and median AUC values in underlined-bold (P < 0.005), bold (P < 0.05) and italics (P < 0.2) are indicative of a statistically significant

better model performance in the corresponding scenario. A one-tailed Wilcoxon signed rank test was used to test whether increases in AUCs in the

CLIMERS scenario relative to the CLIME and the RSE scenarios were statistically significant. In this case, median AUCs in the CLIMERS scenarios are

only marked in underlined-bold (P < 0.005), bold (P < 0.05) and italics (P < 0.2) when differences for both pairwise comparisons (RSE-CLIMERS

and CLIME-CLIMERS) are below the respective significance level.
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RSE and CLIME scenarios for A. melanogenys comes from

visible inspection at the continental scale, where large areas

were predicted outside its known range (see below).

Because this omission test is highly sensitive to the

proportional predicted area (Anderson et al., 2003), we also

compared extrinsic omission rates across the three scenarios at

a constant proportional predicted area close to the observed

ranges of the two bird species (Table 3). For G. spirurus,

extrinsic omission rates in the CLIME and RSE scenarios were

similar. For A. melanogenys, a smaller overall extrinsic

omission rate in CLIME relative to RSE was evident, although

it was not statistically significant (P = 0.232; two-tailed

Wilcoxon signed rank test). Based on one-tailed Wilcoxon

signed rank tests, the decreases in overall extrinsic omission

rates from CLIME to CLIMERS (P = 0.200 for G. spirurus and

P = 0.010 for A. melanogenys) as well as from RSE to

CLIMERS (P = 0.077 for G. spirurus and P = 0.002 for

A. melanogenys) were generally statistically significant.

Model predictive power, variable importance and response

curves

To diagnose variations among the three scenarios in model

predictive power for the two focal bird species in this study, we

monitored the likelihood of the training and test point

localities (training and test gain) under the maxent probabil-

ity distribution (Phillips, 2006). For both species, this exercise

indicated a stepwise increase in training and test gains from the

RSE to CLIME to CLIMERS scenarios, respectively. In detail,

the overall training/test gains (based on 10 random data

partitions) increased for G. spirurus from 1.45/1.18 (RSE) to

1.53/1.41 (CLIME) to 1.85/1.64 (CLIMERS), and for

A. melanogenys from 2.89/2.85 (RSE) to 3.00/2.90 (CLIME)

to 3.34/2.99 (CLIMERS). These findings demonstrate the

complementary information content of the remote sensing and

climate data layers in describing the habitat characteristics of

each species, resulting in a model with the highest predictive

power.

The absolute and relative importance of individual envi-

ronmental variables as predictors of the distributions of the

two birds can be estimated through the training gains when the

variable of interest is used in isolation and excluded from the

whole set of variables in the maxent runs (Fig. 3). For G.

spirurus, this test indicated that the data layers with the most

useful information by themselves are the QSCAT annual mean

followed by rainfall of the warmest quarter. The latter also

appears to have the most information that is not shared with

the other variables. For A. melanogenys, the layers with the

most important information by themselves are the two

topography layers (mean and standard deviation) followed by

the maximum temperature of the warmest month and temper-

ature seasonality, whereas mean topography and QSCAT annual

mean seem to harbour a significant portion of information

that is not contained in the other variables. QSCAT annual

mean was also generally the most important remote sensing

variable in the predictions of the additional six non-focal

species (see Fig. S7). To test whether differences in native

spatial resolutions of the environmental variables (see Table 1)

introduce biases in comparisons of their predictive ability, we

repeated the analysis with all environmental variables coars-

ened to the native 2.25-km QSCAT resolution. In this

comparison, we found no significant changes in variable

importance, suggesting that differences in native data grain size

among variables play a minor role.

maxent also computes response curves showing how the

predictions depend on the variables, which greatly facilitates

the interpretation of a species ecological niche and its defining

or limiting environmental factors. The responses of the most

important environmental variables in the predictions for the

two focal bird species in this study generally agree well with the

corresponding sample histograms (Fig. 4). For G. spirurus, the

ecological niche appears to be defined by QSCAT annual mean

values of > )8.0 dB and rainfall of warmest quarter between

roughly 500 and 1200 mm (Fig. 4a,b). Such environmental

conditions are characteristic of dense humid forests, where the

species is known to occur (Ridgely & Tudor, 1994; Del Hoyo

et al., 2003). Adelomyia melanogenys, on the other hand,

appears to prefer mid-elevations and variable terrain typically

extending from 1000 to 3000 m a.s.l. (Fig. 4c,d). In addition,

this hummingbird species is adapted to a relatively narrow

Table 3 Comparison of model performance

at selected thresholds for G. spirurus and

A. melanogenys. The table shows (a) pro-

portional predicted area and extrinsic omis-

sion rates at the ‘balance’ threshold, and

(b) extrinsic omission rates at constant

proportional predicted area produced in the

model scenarios RSE, CLIME and CLIMERS.

For each scenario, the median and range

(brackets; only decimal shown) values based

on 10 random data partitions are shown.

G. spirurus A. melanogenys

Area Omission Area Omission

(a) ‘Balance’ threshold

RSE 0.367 (200–419) 0.061 (032–129) 0.141 (102–171) 0.022 (014–042)

CLIME 0.458 (340–561) 0.071 (000–161) 0.123 (098–177) 0.029 (014–042)

CLIMERS 0.382 (317–450) 0.058 (000–097) 0.084 (068–118) 0.039 (014–056)

(b) Constant proportional predicted area

RSE 0.126 (065–186) 0.144 (097–194)

CLIME 0.124 (065–194) 0.121 (097–194)

CLIMERS 0.109 (065–143) 0.089 (056–120)

For (b), the constant proportional predicted areas are 0.295 (5% threshold) for G. spirurus and

0.038 (10% threshold) for A. melanogenys, and stem from the CLIMERS scenarios with all point

localities used.
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maximum temperature of the warmest month range of 18–32�C,

but can tolerate a wide range of temperature seasonality

(Fig. 4e,f). A closer inspection suggests that this extended

range in the response to temperature seasonality results from

local adaptations among the populations of A. melanogenys in

the Andes. In comparison with the tropical populations

(diamonds, Fig. 4f), which reside in regions of low temperature

seasonality (< 10�C), the extratropical populations at the

southern margin (crosses, Fig. 4f) of the species distribution

can tolerate much wider seasonal swings in temperature of up

to 30�C.

Visual interpretations

Continental scale

The output of the maxent model consists of a continuous

range with values ranging from 0 to 100 (in units of

cumulative probabilities) indicating the least suitable to the

most suitable conditions for the taxa under consideration

(Phillips et al., 2006). A visual inspection of the predicted

potential geographic distributions of the two focal bird species

in this study showed a broad agreement with their known

distributions (Ridgely & Tudor, 1994; Del Hoyo et al., 1999,

2003) when low thresholds of c. 2.5–5% (G. spirurus) and 10%

(A. melanogenys) were applied (Fig. 5). The good match

between known ranges and predicted distributions also

suggests that the sampling was adequate for predicting the

current distribution of the two bird species.

Predictions for G. spirurus covered a vast area in the

northern half of the Southern American continent that closely

followed the spatial extent of rain forest biomes, including

those in the Amazon basin and the Andes lowlands (Fig. 5a–c).

In addition, maxent correctly predicted the known disjunct

population of G. spirurus in the Brazilian Atlantic Forest (Del

Hoyo et al., 2003). In contrast, A. melanogenys occupied a very

restricted region along the western and eastern flanks of the

Andes, and its north-to-south extent from northern Venezuela

to northern Argentina was correctly identified (Fig. 5d-f).

A closer look at the predicted potential geographic distri-

butions for G. spirurus and A. melanogenys produced with the

three maxent scenarios revealed some distinct characteristics.

For both bird species, all three scenarios agreed well in their

spatial predictions of more suitable conditions (> 20%

cumulative threshold). The CLIMERS scenario agreed best

with the known ranges of the two bird species (Fig. 5c,f),

whereas the CLIME and RSE scenarios predicted extensive but

not coinciding areas outside the known ranges of each bird

(Figs 5a,b and 5d,e for G. spirurus and A. melanogenys,

respectively). Similar patterns of overpredictions were also

evident in the CLIME and RSE scenarios for the additional two

mammal and four tree species that were used in this study (see

Figs S1–S6).

Ecuadorian Andes

For Ecuador, predictions for the two focal bird species with

remote sensing data layers (RSE and CLIMERS) at plausible

cumulative thresholds of 2.5–5% (G. spirurus) and 10%

(A. melanogenys) were more in agreement with their known

ranges (Fig. 6). In the case of G. spirurus, these predictions

showed more fine-grained features than in the CLIME

scenarios, in particular in the Central Coast region and the

western Andean foothills (Fig. 6b–d), where large-scale con-

tinued deforestation has led to fragmented landscapes and

habitat loss (Sierra et al., 2002). For A. melanogenys, RSE and

CLIMERS predictions showed narrower distributions along

both the coast and the western Andean montane cloud forests

than those in the CLIME scenario (Fig. 6b–d), again matching

more consistently human-altered landscape patterns (Sierra
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Figure 3 Results of a jackknife test of variable importance for G. spirurus and A. melanogenys in the CLIMERS scenario using all point

localities. Bars represent training gain, a measure of the average likelihood of the point localities under the maxent probability distribution,

when a particular variable is used in isolation, excluded, and when all variables are used in the predictions of the distributions of the two birds.

Variables with highest gains when used in isolation contain the most useful information by themselves, whereas variables that lead to large

decreases in gains when omitted from the predictor set contain information that is not present in the other variables (see also Phillips, 2006).

Results of jackknife tests of variable importance are provided for the six non-focal species in Fig. S7.
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et al., 2002). However, it must be noted that deforestation

patterns at scales smaller than one kilometre were not captured

with the remote sensing data used in this study. By contrast,

the predictions with climate and elevation data (CLIME) did

not reveal the disjunct populations of the two bird species

along the eastern and western Andes, and in the case of A.

melanogenys along the Chongón Colonche cordillera (Fig-

s 6a,b). Smoother distributions in the CLIME scenarios were

anticipated, as climatic gradients are less sharp than landscape

gradients, in particular in regions with large-scale anthropo-

genic modifications of the landscape. In addition, the large

uncertainties in the interpolated climate surfaces in moun-

tainous and poorly sampled areas (Hijmans et al., 2005), such

as in the Ecuadorian Andes, severely limit their application

over these areas.

DISCUSSION

Quantitative tests on model success with various predictor sets

showed that models built with remote sensing and climatic

data layers in isolation performed well in predicting the

distributions of eight Neotropical species, suggesting that each

of these data sets contains useful information. Models with

climate and elevation data generally performed better across

the three taxonomic groups than those using remote sensing

and elevation data, which appears to be related to a tendency

for increased overprediction with the latter predictor sets (see

below). Overall, however, predictions created with a combi-

nation of remote sensing, climate and elevational variables

generally performed best across all species. Effects of a

species’ ecology on the usefulness of remote sensing data in
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Figure 4 maxent response curves (lines)

and sample histograms (diamonds) of a

selected set of environmental variables for

(a,b) G. spirurus and (c–f) A. melanogenys.

The response curves illustrate how the con-

tribution to the raw prediction depends on a

particular environmental variable (Phillips,

2006). Because the maxent model is an

exponential model, the probability assigned

to a pixel is proportional to the exponential

of an additive combination of the variables.

The response curves above show the contri-

bution to this exponent (y-axis) as a function

of a particular environmental variable

(x-axis). Maximum values in the response

curves correspond to the highest predicted

suitability. The response curves were derived

from maxent runs using all point localities

and the respective environmental variable in

isolation, and, thus, do not include interac-

tions with other environmental variables.

The sample histograms show the number of

point localities (frequency) that fall in a

certain interval of the environmental variable

under consideration. In (f), sample frequen-

cies that correspond to Bolivian point local-

ities are plotted as crosses.
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distributional modelling were discernible. The addition of

remote sensing data as predictor variables led to the largest

improvement in model performance for species with relatively

large range sizes and low habitat specificities (e.g. C. brasiliensis

and B. variegatus). In this case, the inclusion of remote sensing

data apparently leads to a much more constrained modelled

ecological niche. This is probably because there is little

variation in climate across the Amazon basin, so that these

variables alone do not provide much predictive power. Remote

sensing data reveal differences in forest structure in this

homogeneous climate space, thereby providing valuable addi-

tional information to refine species distributions.

In contrast, for the two species with the most restricted

range sizes and highest habitat sensitivities (A. melanogenys

and Mi. minutus), the addition of remote sensing data

yielded only marginal (A. melanogenys) or no (M. minutus)

(a) (c)

G. spirurus

(b)

Worst conditions Optimal conditions

(d)

CLIME

(f)

A. melanogenys

(e)

RSE CLIMERS

G. spirurusG. spirurus

A. melanogenysA. melanogenys

0 1 2.5 5 10 20 >50%

Figure 5 Predicted potential geographic distributions of the two focal bird species produced with the three predictor sets CLIME, RSE and

CLIMERS using all point localities. The panels show the maxent predictions for G. spirurus and A. melanogenys in the (a,d) CLIME, (b,e)

RSE and (c,f) CLIMERS scenarios, respectively. Corresponding maxent predictions with the three predictor sets are also provided for the

additional two mammal and four tree species in supplementary Figs S1–S6.
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improvements in model success. However, because of the

overwhelming importance of elevational variables (see Figs 3

and S7) in the predictions of these two species, inferences

concerning the merits of remote sensing data are limited.

Our findings emphasize the complementary information

content in the climatic and remote sensing layers, leading

generally to a more constrained modelled relationship of the

ecological niche and more accurate spatial predictions. Similar

results were obtained by Parra et al. (2004), who showed that a

combination of climate and NDVI data sets improved

predicted distributions of Andean bird species, although less

significantly than in this study.

At continental scales, potential geographic distributions for

the two focal bird species and for the additional two mammal

and four tree species (see Figs S1–S6) created with only a

subset of the available environmental information showed

substantial prediction of area outside their observed ranges.

Across the eight species, overprediction was generally most

pronounced in model scenarios with remote sensing and

elevation data. These patterns are not unexpected, as regions

far distant from a species’ point localities may reveal similar

surface reflectance signatures in remotely sensed spectral space,

even if they exist in different climate regimes. Hence, results of

continental-scale species distribution modelling studies that

rely entirely on remotely sensed measurements (e.g. Roura-

Pascual et al., 2006) should be interpreted cautiously. In the

scenarios with climate data, overprediction may be a result of

not capturing important characteristics of these species’

ecological niches. Alternatively, overprediction in these sce-

narios may be a result of not capturing all limiting bioclimatic

parameters with the required accuracy, or of artifacts resulting

from interpolating climate within sparse station networks. In

this context, it was reassuring that, when the full suite of the

available environmental information was used, the corre-

sponding predictions for the two focal bird species and the six

additional species showed the least amount of overprediction

and generally coincided best with their observed distributions.

Along the Amazonian–Andean elevational gradients, the

two focal bird species occupy marginally overlapping habitats.

Glyphorynchus spirurus is more frequent in the lowland and

foothill tropical rain forests, where it forages chiefly for

arthropods on the trunks of trees. Adelomyia melanogenys, in

contrast, is found in the wet to humid montane forests at

mid-elevations, where it feeds primarily on the nectar of

flowering shrubs and epiphytes. With respect to variable

importance and response curves, the results for the two bird

species are consistent with these habitat characteristics. The

geographic distribution of G. spirurus is broadly defined by

precipitation patterns, with significant amounts of rainfall

even in the warmest season typical for humid rain forests. In

contrast, A. melanogenys has generally adapted to a flora in a

relatively narrow hydro-thermal regime in the mid-elevations

of the northern central Andes. For both forest-bird species,

microwave-based QSCAT measurements of surface canopy

moisture and roughness were important in the predictions. In

comparison to optical measurements and derived variables

(LAI, tree cover), the higher significance of QSCAT mea-

surements could be the result of backscatter sensitivity to

canopy roughness. In other words, optical measurements

gradually lose their sensitivity to leaf area because of signal
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Figure 6 (a) Range maps of the two focal bird species in

Ecuador and corresponding close-ups of the predicted potential

geographic distributions in the three model scenarios (b) CLIME,

(c) RSE and (d) CLIMERS. The range maps for G. spirurus and

A. melanogenys were reproduced from Ridgely & Greenfield

(2001). The predictions for G. spirurus (b–d left panels) and

A. melanogenys (b–d right panels) are close-ups of the

corresponding maxent predictions in Fig. 5.
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saturation, whereas QSCAT backscatter is less saturated and

can resolve the differences that may exist for dense forests

with approximately similar LAI but different canopy struc-

ture. In comparison to precipitation, QSCAT measurements

may also better capture the true moisture signature of the wet

to humid montane forested habitats of A. melanogenys, as the

‘horizontal precipitation’ received at these locations in the

form of mist and clouds off the ocean in addition to real rain

contribute significantly to the overall moisture supply (Still

et al., 1999).

The Ecuador case study provided promising insights

regarding the utility of the newly available satellite data at

the regional scale. Because this study was conducted at 1-km

spatial resolution close to the native or effective resolution of

the remote sensing data layers, their full potential as surrogates

for capturing microclimatic and land cover variations could be

exploited. At these scales, the accuracy of the interpolated

climate surfaces is more sensitive to the station network

density, in particular over regions with highly variable terrains,

such as the Ecuadorian Andes (Hijmans et al., 2005). Predic-

tions that incorporated remote sensing data could resolve the

spatially isolated populations of the two focal bird species in

the vicinity of the Ecuadorian Andes much more clearly. In

addition, the inclusion of remote sensing data layers led to a

sharper delineation of the predicted areas and better exclusion

of areas that have suffered large-scale land-use and deforesta-

tion impacts.

In conclusion, the findings of this study suggest that the

landscape, vegetation, and ecosystem attributes derived from,

or present in, the applied remote sensing data contribute

significantly to defining habitat characteristics, natural barriers

and gradients that may exist even within similar climatic

conditions. We expect that comparable results can be obtained

using other species and algorithms. From the standpoint of

conserving biodiversity, these results have significant implica-

tions. More accurate mapping of species distributions in

biodiversity hotspots, such as along the steep Amazonian–

Andean elevational gradients (Myers et al., 2000; Bush, 2002),

will improve the classification of areas with high habitat

suitability that are threatened by both human land-use and

climate change.
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