The ESA BIOMASS Mission

Malcolm Davidson

BIOMASS Mission Scientist and the BIOMASS MAG(*)

(*) Thuy Le Toan, Shaun Quegan, Heiko Baltzer, Philippe Paillou, Konstantin Papathanassiou, Fabio Rocca, Lars Ulander, Stephen Plummer

Credit: AOES Medialab

- The ESA Observation program
- The BIOMASS mission
 - Scientific Objectives
 - Technical concept
 - Support activities
- Synergies with DESDynl
- Conclusions

European Space Agency Agence spatiale européenne

ESA Earth Explorers

Living Planet

European Space Agency
Agence spatiale européenne 200

The selection process

The Next Earth Explorer

Call for ideas issued in 2005

- Science priorities
 - The Global Water Cycle
 - The Global Carbon Cycle
 - Atmospheric Chemistry
 - The Human Element
- 24 proposals evaluated
- 6 Candidate Missions selected for further study
 - BIOMASS: BIOMASS Monitoring Mission for Carbon Assessment
 - TRAQ: TRopospheric composition and Air Quality
 - PREMIER: Process Exploration through Measurements of Infrared and millimeter Emitted Radiation
 - FLEX: Fluorescence Explorer
 - A-SCOPE: Advanced Space Carbon and Climate Observation of Planet Earth
 - CoRe-H20: Cold Regions Hydrology High-resolution Observatory
- Expected launch 2014-2015

Earth Observation Envelope Programme

Call for Ideas for the Next Earth Explorer Core Missions

ropean Space Agenci

European Space Agency Agence spatiale européenne

BIOMASS Phase-0 Organisation

Reports for Assessment provide updated mission details (scientific, technical)

European Space Agency Agence spatiale européenne BIOMASS

- Mission Assessment Group
 - Help define the scientific objectives
 - Advice on mission concept
 - Support writing of report for assessment
 - Meetings approx. 3 times/year

	Thuy Le Toan, France	=>	Thuy.Letoan@cesbio.cnes.fr
	Heiko Baltzer, UK	=>	hb91@le.ac.uk
	Philippe Paillou, France	=>	philippe.paillou@obs.u-bordeaux1.fr
	K. Papathanassiou, Germany	=>	kostas.papathanassiou@dlr.de
	Shaun Quegan, UK	=>	s.quegan@sheffield.ac.uk
	Fabio Rocca, Italy	=>	rocca@elet.polimi.it
	Lars Ulander, Sweden	=>	ulander@foi.se
	Stephen Plummer, UK	=>	stephen.plummer@esa.int
	Hank Shugart (US Observer)	=>	hhs@virginia.edu
F.	Sassan Saatchi (US Observer)	=>	saatchi@congo.jpl.nasa.gov
Agence	e spatiale européenne 2008 Veg3D and BI	OMASS Wo	orkshop, Charlottesville VA, March 3-5,2008

- Improved understanding and quantification of land contribution to global carbon cycle
 - Quantify flux of carbon from land use change
 - Greatly improved modelling of terrestrial carbon cycle
- Objectives achieved through
 - Gridded high-resolution global estimates of above ground biomass
 - Monitoring and quantification of forest disturbance and recovery
 - Monitoring and quantification of wetland areas and forest inundation
- Additional objectives related to opportunity for spaceborne P-Band SAR images
 - Mapping subsurface structures, polar regions,
 - Mapping subsurface geomorphology in arid zones

European Space Agency Agence spatiale européenne

Scientific Background

- Terrestrial contribution to the global carbon cycle poorly understood
- Forest biomass information critical for inventory of CO2 stocks and fluxes
 - Fluctuations in total forest biomass provide immediate feedback on CO2 release
 - Provide initial condition for biophysical models
 - Biomass changes with time integrator of CO2 production and loss processes
- No consistent source of biomass suitable for climate models
 - National reporting not spatially explicit and with unspecified errors
 - Only 1 gridded low-resolution monotemporal dataset compiled from country/sample plot information (Olson map)

European Space Agency Agence spatiale européenne

2008 Veg3D and BIOMASS Workshop, Charlottesville VA, March 3-5,2008

Kg Cm⁻²

2

Use of biomass information in CO₂ models

CO₂ dynamics

Integrates production and loss processes

Modulates released of CO₂

Determines temporal profile of carbon uptake and released

Provides initial model conditions

Carbon Models

Improved modelling of terrestrial carbon cyle

European Space Agency Agence spatiale européenne

iomass/Forest Exten

2008 Veg3D and BIOMASS Workshop, Charlottesville VA, March 3-5,2008

BIOMASS

Biomass information within carbon models

- Methane strong contributor to global warming
- Extent and temporal evolution of floodplain under forest canopy not well known

Varzea Dry Season

P-band backscatter

Varzea Wet Season

P-band backscatter

European Space Agency Agence spatiale européenne

BIOMASS mission requirements

Living

Information Product	Mission Requirements
Forest Biomass (above ground)	 20% accuracy 100-300m resolution/16 looks 2 biomass maps/year Polarimetric Interferometric mode Global coverage of forests
Forest Disturbance	 Maps of disturbed area with 10% classification accuracy 100m resolution/16 looks 1-2 forest disturbance maps every 2months Global coverage
Forest Regrowth	 Biomass information 20% accuracy Biomass rate of change – 20% accuracy 100-200m resolution/16 looks 2 revisits/year Global coverage with focus on tropical forests
Forest seasonal floods	 Inundation area information – 10% classification accuracy 100m resolution/16 looks 1 revisit/month during flood season tropical forests (main target) + boreal wetlands (secondary target) for methane emission

European Space Agency Agence spatiale européenne

BIOMASS Coverage

European Space Agency Agence spatiale européenne

2008 Veg3D and BIOMASS Workshop, Charlottesville VA, March 3-5,2008

14

BIOMASS

Achieving the BIOMASS requirements

 Global forest biomass estimates to be derived using three different techniques

esa

- Exploitation of biomassintensity relationship at P-Band
- Forest height retrieval using Polarimetric-Interferometric techniques
- Classification using polarimetric signature
- Final product may combine intensity and forest height information
- Interpretation and validation of biomass products and algorithms supported by tomographic mission phase

European Space Agency Agence spatiale européenne

2008 Veg3D and BIOMASS Workshop, Charlottesville VA, March 3-5,2008

Living Plane

Achieving the BIOMASS requirements

Living

 Mission implemented using two phases (Main Phase, Tomographic Phase)

esa

- Main Phase (98% of time)
 - dedicated to mapping of forest biomass, recovery and flooding
 - to support intensity and polarimetric interferometry
- Tomographic phase (2% of time)
 - 10-12 baselines short revisit time
 - Identify the sources of the radar signal
 - Validate intensity/PolInSAR techniques

European Space Agency Agence spatiale européenne

2008 Veg3D and BIOMASS Workshop, Charlottesville VA, March 3-5,2008

16

- ESA Industrial study running from April 2007 to September 2008 to define P-Band SAR payload and mission characteristics
- Mid-term review held in Dec.2007: no major show-stoppers identified

Instrument Type	P-band Synthetic Aperture Radar (SAR)	
Centre Frequency	435 MHz (P-Band)	
Bandwidth	≤6 MHz	
Polarisation	Full Polarimetry/Compact pol.	
Data Acquisition	Single Pass/Repeat Pass polarimetric interferometry	
Spatial Resolution	≤ 50 x 50m (4 looks)	
Swath Width	≥ 100 km	
Noise Equivalent σ_0	≤ 27 dB (T), -30 dB (G)	
Absolute Radiometric Calibration	≤ 1 dB	
Radiometric Stability	≤ 0.5 dB	

European Space Agency Agence spatiale européenne

Technical Concept

European Space Agency Agence spatiale européenne

Mid-Term Review - Baselines

	Deployable Flat Array	Reflector
Antenna Aperture	Length 17.9m	Diameter 12m
	Height 4.5m	
Surface	80 m ²	113 m ²
ITU	Compliant with tapering	Compliant with tapering
Gain	27.4 dB	32.5 dB
RF peak Power	600 Watts	500 Watts
PRF	1700Hz-1800Hz	3600Hz-3800Hz
Total Swath	80 km (STRIPMAP)	55-60km (STRIPMAP)
		110km (SCANSAR 2 swaths)
Coverage time	35 days	45-50 days (STRIPMAP)
		25 days (SCANSAR)
Resolution	≤50 mx50 m (≥ 4 looks)	≤ 50mx60m (≥ 4 looks)
NeSigma0	-30dB/-26.5dB	-31dB/-28dB
Total Ambiguity Ratio	<-20dB	<-20dB
Data Rate Instrument	80 Mbit/sec (5 bits)	133 Mbit/sec (8 bits)

European Space Agency Agence spatiale européenne

CSA BIOMASS Supporting Activities

Several scientific supporting activities have been initiated to better define the overall mission concept

BIOMASS

Living Planet

- Scientific collaboration
 - MAG expected to consult with user community
 - Scientific support studies
 - Documented airborne campaign datasets
- Forest Biomass constellation ?
 - Cross-validation of products e.g. radar forest height P- and L-Band and lidar forest height
 - Exploit advantages of each mission e.g. lower resolution BIOMASS product with higher-resolution DESDynl products
- Programmatic collaboration
 - Always most difficult (funding cycles often incompatible with mission development milestones)
 - BIOMASS design stand-alone but participation from other agencies not excluded
 - Start of Phase-A in March 2009 (assuming selection) would provide ideal opportunity

European Space Agency Agence spatiale européenne

ESA Campaigns

- Consolidated datasets from ESA airborne campaigns accessible to scientific community
- Category 1 proposal required
 - <u>http://eopi.esa.int/esa/esa</u> and click on ESA Campaigns link
- Existing campaign datasets of interest to the SAR community
 - TreeSAR 2003 (DLR E-SAR, Traunstein test site SE Germany)
 - Indrex-2 2004 (DLR E-SAR, Tropical forests and plantations, Kalimantan Indonesia)
 - BioSAR 2006 (DLR E-SAR, Boreal forests in Sweden)

European Space Agency Agence spatiale européenne

2008 Veg3D and BIOMASS Workshop, Charlottesville VA, March 3-5,2008

Living Plane

BIOMASS represents a dedicated mission to:

- Quantify flux of carbon from land use change
- Greatly improved modelling of terrestrial carbon cycle to improve our understanding and quantification of land contribution to global carbon cycle
- Mission objectives to be achieved through provision of consistent global information on forest biomass, forest disturbance and recovery and seasonal forest flooding retrieved using long-wavelength SAR (P-Band current baseline)
- Final decision on build and launch expected in 2010

