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Summary Methods Results from a Case Study in Maine, USA

DESDynl (Deformation, Ecosystem Structure and Dynamics of Ice) is a NASA Study Sites and Ground Measurements: Model Uncertainty and Measurement Errors
satellite mission that will provide global estimates of aboveground biomass using S S g

LiDAR (Light Detection and Ranging) and L-band radar. LiDAR waveforms and radar
backscatter coefficients at different wave polarizations are sensitive to forest
height, structure, and composition, and can be used to make quantitative
estimates of standing biomass and carbon stocks. Accuracy requirements for the
DESDynI biomass product are 20 Mg ha or 20% (errors not to exceed 50 Mg ha'),
at a spatial resolution of 250 m globally at end of mission, and 100 m for areas of
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quantify sources of errors associated with biomass estimates. Coincident data g I )
from DESDynl airborne simulators (Laser Vegetation Imaging Sensor, LVIS; * Radar was most sensitive to biomass <100 Mg ha*, and measurement errors
Uninhabited Aerial Vehicle Synthetic Aperture Radar, UAVSAR) and ground-based Filed measurements included tree species, DBH, and height in 1 ha plots were greater than LiDAR (77 and 53 Mg ha'?, respectively).
forest inventory measurements provided data needed to quantify model (subdivided into 16 @ 25 m subplots).
uncertainty and measurement errors. = o
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To compute sampling errors, DESDynl orbits and cloud cover was simulated and =1 240
used to subsample wall-to-wall LVIS data. Model uncertainty and measurement g jg 30
errors for LiDAR-derived biomass were less than radar, but the gridded estimates of UAYsAR H F 20
LiDAR biomass also included a sampling error that was greater than model 5 S
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uncertainty and measurement errors. Radar estimates are important for filling & s °
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gaps in LIDAR sampling, and a “fused” data product will have greater accuracy, Estimoted biomass (Mg ha™) Estimated biomoss (Mg ho™')

primarily in areas of low biomass. . L .
* MCMC analysis of model uncertainty indicated that DESDynl requirements

can be achieved with these simple models, but footprint-scale estimates

. require averaging to reduce individual measurement errors (see above).
Data Sources and Error Analysis
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Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynl)
http://desdyni.jpl.nasa.gov/

Laser Vegetation Imaging Sensor (LVIS)
https://Ivis.gsfc.nasa.gov

Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)
https://lvis.gsfc.nasa.gov

North American Carbon Program (search for campaign data under “DESDynl”)
http://www.nacarbon.org

+ LiDAR measurement errors are general less than radar, but are more
comparable in areas of low biomass density.
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*Sampling error due to incomplete coverage and cloud obscuration
contributes to the total error of LIDAR measurements, but not radar.

* Radar estimates can be used to estimate areas of low biomass at a fine
spatial scales (1 ha), and may be adequate for filling gaps in LiDAR sampling.

* Each scenario removes 50% of LIDAR samples



