NASA Carbon Cycle & Ecosystems JOINT SCIENCE WORKSHOP

Remote sensing and in-situ measurement of habitat diversity and function

Phil Townsend

John Gamon, Clayton Kingdon, Aditya Singh, Shawn Serbin, John Couture, Eric Kruger

Contributions: Gil Bohrer, Francisco Chavez, Steve Garrity, Thomas Hilker, Fred Huemmrich, Alasdair MacArthur, John Olson, Eric Ross, Joe Sexton, Rob Sohlberg, Lee Vierling, Ben Zuckerberg

April 20, 20

What do we want from our NASA satellites for CC&E?

- More frequent Landsat
- High spatial resolution
- More bands, narrower bands, or...
- Hyperspectral!
- Lidar, SAR, fluorescence....

When do we want it? Now!

In-situ measurements

- Validation/calibration;
- Measurements that cannot be currently made from remote sensing;
- Measurements of features we want to predict from remote sensing; and
- Fill in gaps in the remote sensing record.

Density of Measurement frequency, spatial distribution, spatial resolution, etc.

idea from J. Gamon

Few, expensive measurements

Density of Measurement Spatial distribution is low, but...

Expense

Density of Measurement Spatial distribution is low, but...

Many, expensive measurements

Density of Measurementtemporal resolution is high.

Density of Measurement frequency, spatial distribution, spatial resolution, etc.

In-situ measurements – take-home messages:

- The new methods aren't new.
- Creative deployment and leveraging:
 - Take advantage of new computing power
 - Crowdsourcing and citizen science
 - Big drops in the cost of instrumentation or analysis (think eDNA or sequencing in general).
- The maker mentality.

Many, cheap Citizen science Trailcams Townsend et al. w/WiDNR

2012-09-16 8:45:06 PM M 3/5

3:52:40

M 2/3

06-13 8:

2011-10-29 1:34:55 PM M 5/5

Many, cheap Link to NASA imagery Trailcams Townsend *et al.* w/ Wi DNR

> Bushnell +

Project FeederWatch

Many, cheap Citizen science Bird feeders Ben Zuckerberg

> 12,000 participants> 20 years of data

Many, cheap Citizen science Link to NASA imagery Eric Ross & Ben Zuckerberg.

Env-DATA – Environmental Data Automated Track Annotation system in MoveBank

Track annotation:

a) Albatross tracks annotated by Ocean NPP

Areal (home-range) annotation:

b) Albatross data overlaid on chlorophyll-a

Gil Bohrer

Dodge et al 2013, Movement Ecology, 1:3

Many, cheap

Sensor network ("UAS")

The Global Land Cover Facility www.landcover.org

Wildlife Tracking

- Habitat Modeling
- Livestock Management
- Game Management
- Endangered Species Protection
- Human-Wildlife Conflict Prevention

Mattson, Sexton et al. 2010-2015. NASA Biodiversity & Ecological Forecasting Program.

Many, cheap

Sensor Networks (radio collars)

Joe Sexton

Freshwater fish, invertebrates & algae are often difficult to detect:

- Small, cryptic, rare
- Low detection rates
- Time and resource intensive

Environmental DNA (qPCR)

Detection rates 80-96%

Faster & cheaper sampling (< 30 min, <\$30/sample)

More and better occurrence data Robust relationships to NASA data Resulting in reliable predictions

MaxEnt diatom model correctly classified 93-100% of validation sites using eDNA and traditional data

John Olson

Many, cheap

Broadscale sampling (eDNA)

eDNA can detect organisms that divers do not

The models can now simulate zooplankton that are important food for salmon and other commercially important species.

Francisco Chavez

Broadscale sampling (eDNA)

Many, cheap

Increasing temporal sampling

Autonomous Terrestrial Laser Scanner (ATLS)

Eitel, Vierling, Magney (AFM, 2013)

Many, "cheap"

Sensor networks (laser scanners), Maker

Lee Vierling

Small, inexpensive, calibrated spectral radiometers

Original design (Garrity, Vierling, et al., AFM, 2010)

Decagon design (Campbell, Garrity, et al.)

Seasonal PRI and NDVI trends (Magney et al., in review)

Many, cheap

Inexpensive radiometers

Lee Vierling

Multi-angle PRI to estimate LUE

an-Tilt unit ripod mounting Upward looking • Tumbarumba (Ozflux) Landscape level probe with cosine + Harvard (Ameriflux) Satellite (multi-angular) Howland (Ameriflux) 0.8 ***** DF49 (CCP) HJP1975 (CCP) [∞] [∞] 0.6 △ OJP (CCP) ♦ HJP2002 (CCP) ▼ NOBS (CCP) r²=0.69 0.2 0 3 2 Canopy level ε [gC MJ⁻¹] Branch sensor (multilevel angular) sensors Ε n

More expensive

Downward looking probe

Piggybacking Spectrometer/Tower

Thomas Hilker

Seasonal/Diurnal Spectral Vegetation Indices from FUSION

Automated tower collects hyperspectral bidirectional measurements Data from cornfield in Beltsville, MD All observations with 25° VZA and 330° from NVAA

Model of GEP using NDVI, PRI and SIF for half-hourly values through the growing season

More expensive Tower Instrumentation Fluorescence Betsy Middleton *et al.*

Far-red Fluorescence and Chlorophyll Index

NASA Goddard's LiDAR Hyperspectral Thermal Imager (G-LiHyP)ant Fluorescence

Remote sensing of carbon fluxes: what can bottom-up approaches provide?

Slide from John Gamon

Plot 68 (SR = 16)

Intermediate

Spectrometer on a tram

John Gamon

Imaging Spectrometer on Tram

Orbital (e.g. EO-I / HyspIRI / Landsat @ ~ 700 km)

High Altitude (e.g. AVIRIS on ER-2 @ 10K – 20K m)

Mid Altitude (e.g. AVIRIS on Twin Otter @ 2K – 5K m)

Low Altitude (e.g. G-LiHT on Cessna 206 @ 330 m)

UAS (next big thing @ 10 – 120 m)

Fixed Tower (e.g. AMSPEC, < 50 m)

Proximal/Tram (Spectra, < 5 m)

Leaf (<< | m)

Stated imaging Spectrocopy data across all spatial scales. Bridge saps from lear to field to airborne to space. Graphic by Rob Sohlberg

Callibra

FSF Piccolo wireless DFOV single spectrometer system

- · measurements on demand or time series
- Files saved on internal memory and sent to base station
- Diffuser Weight 0.8kg Cosine Radio corrected Battery Control and data transfer Lithium polymer 14.7 V XBee Pro ~1.6 km range Downwelling 1 Ah Shutter driver & comms FO shutter control board. Min shutter FSF desian open/close 60mm cycle ~8ms Computer Raspberry Pi Fibre Model A Bifurcated Length up to 5m 90mm Upwelling FO shutter Spectrometer Ocean Optics USB2000 Downwelling Upwelling Spectral range ~400 – 950nm 1. Acquire downwelling spectrum Sampling interval ~ 0.4nm 2. Acquire upwelling spectrum FWHM 1.3nm Digitisation 16-bit 3. Acquire dark spectrum

Intermediate

Spectrometer on a UAS

Alasdair MacArthur

Ground controller

Folder Sample		Folder	Sample
Name SmallGreenPlant		Neero	ca allo an plant
Number 001		Name	SmallGreenPlant
Time 08:42:22		Number	002
			Auto-increment
		Time	08:45:25
Integration times		-Integration times	
Upwelling 150 ms		Upwelling 150 🤤 ms	
Downwelling 40 ms		Down	welling 40 1 ms
			Acquire
			Trequiro
Downwelling	Upwelling		Reflectance
Show	🗹 Show		Show
Raw	Raw		
O Dark			

Scaling Complexity to Enable Science

Density of Measurement

Expense

Scaling Complexity to Enable Science

Density of Measurement

WHAT DO WE WANT? TIME TRAVEI WHEN DO WE WANT IT ? IT'S IRRELEVA