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Conserving adaptive variation: putting process on the map
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Problem

« The conservation of evolutionary process has
been acknowledged to be important, however...

= ...little attention paid to adaptive variation,
although this has to be maximized in the face of
climate and land-use change.

« Few theoretical frameworks and computational
methodologies to incorporate adaptive variation
are available

Background
« For a long time conservation efforts have

focused on areas of high species richness,
endemism and level of threat.

« In addition to species, adaptive variation
critical to conserve, to retain the potential for a
response to changing environments

+ This is especially important in the face of
human induced climate and land-use change.

« Evolutionary processes have so far been
included by: 1. a measure of phylogenetic
diversity (e.g. branch lengths); 2. detailed
knowledge of processes (but only available for
limited number of geographic areas).

= But little attention for intra-specific adaptive
variation and the mechanisms that generate and
sustain it.

Our proposed framework
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* Relatively low % potentially due to
homoplasy in microsatellite loci.

West view

Materials and Methods

« MAXENT': ecological niche modeling
approach using species presence data and
climate as well as remotely sensed
environmental information.

« Generalized Dissimilarity Modeling (GDM?2):
non-linear matrix regression, using splines to fit
environmental differences to genetic or
phenotypic differences. Uses iterative selection
process to only include important environmental
variables. In addition creates spatial predictions
of genetic and phenotypic patterns into areas
that were not sampled.

+ Exemplifying the framework:
* Target species: birds, frogs
bats
* Target area: Ecuador
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The maximum level of these response curves
indicate the relative contribution of each variable to
explaining the total variation. The slopes indicate
rates of change.

West view

Predictive maps of the genetic pattern based on
15 sampling localities (red dots). Differences in
colors represent differences in the genes (see
color bars). Analyses for: A) entire Ecuador; B)
and E) west of the Andes; C) and D) east of the
Andes.

In the west, different variables were important,
indicating that different processes are shaping the
genetic patterns on either side of the Andes.

Morphology

Several morphological features were well explained
by environmental variables in either the east or the
west of the Andes:

Percentage of total variance explained ]
Ecuador Westof Andes East of Andes
Tarsus length 42.0
Wing length 479
Tail length
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Patterns are mainly driven by % treecover and
various temperature measures.

Streak-necked Flycatcher

% of total variance explained
Bill width 60.2
Bill depth 726

Genetic variation
(microsatellites) was
not well explained by
environment

This could indicate:
1) Homoplasy in
microsatellites, or 2)
gene flow across the
Andes.

However, two
morphological traits
seem to be adaptive.

Areas of particularly high
turnover.

. » Adaptive variation particularly
Bt along gradients from lowland to

o

2l higher elevations.

B Especially high turnowver for all
. studied species and traits along
| northwestern and northeastern

-, slopes of Andes.

*Currently protected areas do not
extend far encugh inte those regions
ET. ~ orinto the lowlands.
Hatched areas are cumently protected (source: IUCH)
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