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In the northern high latitudes, wetlands and open water bodies are common landscape features. Their carbon and methane 
emissions can have a large influence on hydrologic processes, surface-atmosphere carbon exchange, and associated impacts on 
global climate. It is therefore of great importance to assess their spatial extent and temporal character to improve hydrologic and 
ecosystem process modeling. SAR is an effective tool for this purpose because it is sensitive to surface water and it can monitor 
large inaccessible areas regardless of atmospheric conditions or solar illumination. We employ multi-temporal L-band SAR data 
from the Japanese satellites JERS-1 and PALSAR to map wetlands and open water bodies in Alaska and at a selection of study 
sites within the NEESPI domain, in Eurasia. A supervised decision tree based approach was used to generate the land cover 
products. For Alaska, we assembled regional-scale 100 m monthly JERS-1 mosaics from 1998 to assess open water change. DEM’s
and derived slope were also employed to improve classification performance in topographically complex regions where radar 
shadowing was prevalent. For selected basins in Eurasia, PALSAR and Landsat data were used in conjunction with JERS-1 
imagery to map wetlands and open water change, at 30 m resolution. Products were validated with land cover and open water 
maps derived from Landsat, AVHRR, MODIS and SRTM. We examined methods for integrating these products within a 
hydrologic and methane modeling construct to investigate how wetland methane emissions respond to climate change.

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, the University of 
Washington, and The University of Michigan under contract to the National Aeronautics and Space Administration.



Open Water Classification: Eurasia
Datasets: 
Palsar (L-Band, 6.25 m, HH polarization); 
Landsat ETM (30 m); SRTM DEM (interpolated
to 30 m). Ancillary products were derived from
these datasets.

Approach:
A decision tree based approach was used to generate
the open water maps based on the following input
bands: Landsat band ratio of 5/2; ndvi; dem; derived
slope; and radar backscatter.

Objective: 
To produce a high resolution, 30 m, classification
of open water bodies over focus basins in Eurasia
using radar remote sensing.
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Synergy Between Optical and Radar Open Water Classifications of the Different Basins
At L-band, open water
appears very dark because it
acts as a specular reflector. 
Areas with little or no 
vegetation also appear very
dark and may be confused as 
open water. Optical
wavelengths can differentiate
bare surfaces from open
water. However, cloud
coverage is a common
problem with optical data 
whereas radar data is
impartial to it. The synergistic
use of optical and radar data 
is of great advantage for
detecting open water.

Landsat Palsar Open Water Product
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Illustration of Palsar and open water products for three different basins.



Wetland Classification: Eurasia
Datasets: 
Palsar (L-Band, 6.25 m, HH); Landsat ETM (30 
m); SRTM DEM (interpolated to 30 m). Ancillary
products were derived from these datasets.

Approach:
A supervised decision tree based approach adapted
from the Random Forest Algorithm (Breiman, 2001) 
was used. 

Objective: 
To produce a high resolution, 30 m, wetlands
classification over focus basins in Eurasia using
radar remote sensing and ancillary datasets.
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The open water classification
generated previously was used
to mask open water bodies

Decision Tree Classifier
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The above images and derived
products have been
coregistered to a common
projection and 30 meter 
resolution. They serve as 
input layers into the decision
tree classifier.

Wetland Classifications of the Different Basins
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Image segmentation was
applied using a classification
software known as 
Ecognition.

Accuracy assessment
was based on validation
pixels not used for
training. Accuracy
varied between 2% and
20% according to class. 
However, because of
limited ground truth
data, these values may 
vary.

Decision Tree Classifier: Random Forests
Random forest generates a large number of decision trees 
(i.e. a forest) based on ground reference (training) data and 
input data layers generated for remote sensing and ancillary 
data sources. Each decision tree is generated through an 
iterative process wherein nodes are split according to the 
pixel values in each input data layer covered by the training 
data. This continues until nodes can no longer be split. 
Each pixel to be classified is run through every decision 
tree in the forest. The final class assigned to the pixel is 
that class selected by the most decision trees in the forest. 
Classification accuracy is determined by comparing the 
final classified product to training data withheld during the 
generation of the forest. 
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Open Water for Use in Methane Emissions Modeling
Objective: 
To use 30 meter multi-temporal open water maps as input
into a methane emissions model to assess how changes in 
open water affect methane emissions across a season.

Datasets and Models: 
JERS-1 (L-Band, 12.5 m, HH); Landsat ETM (30 m); SRTM DEM (interpolated to 30 m). 
Hydrogical model (VIC); 
Ecosystem process model (BETHY); Walter and Heimann methane emissions model

Model Description

Our modeling framework consists of the Variable Infiltration 
Capacity (VIC) hydrological model (Liang et al., 1994), 
enhanced with ecosystem processes taken from the Biosphere 
Energy Transfer Hydrology (BETHY) terrestrial carbon model 
(Knorr, 2000), and coupled to the wetland methane emissions 
model of Walter and Heimann (2000). The models are linked as 
follows: the VIC (enhanced with carbon cycling processes from 
the BETHY model (Knorr, 2000)) component runs at an hourly 
time step, simulating, among other variables, soil temperature, 
soil moisture, and net primary productivity (NPP).  At the end of 
the simulation, these hourly time series are aggregated to daily
values, and VIC’s daily soil moisture is converted to a daily 
distribution of water table depths across the catchment.  Then, 
for each day, the resulting distribution of water table depths is 
discretized, and methane emissions are estimated (via the 
methane emissions model of Walter and Heimann (2000)) as a 
function of soil temperature, NPP, and water table depth for each 
water table value in the discretized distribution.  The total 
methane emission of the grid cell, then, is the area-weighted sum 
of the methane emissions from all of the discrete values of the 
water table depth.

The VIC model:
1. Performs on large, “flat” grid cells (ex. 
100x100 km.)
2. Generates hourly simulations of:
soil temp., water table depth (ZWT), NPP, 

other hydrologic variables
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The above flowchart indicates the
sequency of steps and input
parameters needed to model
methane emissions

Model Simulation: Chaya Basin

Multi-temporal JERS-1 data from
1995 were used to to produce open
water maps. For the modeling
component, two open water image
swaths were chosen based on their
overlap and day of acquisition. The
first swath was acquired on April 10, 
1995 (red) and the second on May 23, 
1995 (yellow). These days represent
wide variations in open water
saturation. Red swath- April 10, 1995

Yellow swath- May 23, 1995

Palsar

Swath Coverage over the Chaya Basin Multi-temporal Open Water Maps

April 10, 1995 May 23, 1995

Change from day 100 to day 143 of 1995

Model
“saturated” :
water table
above -40 cm

Bog 
pool/ridge
complex
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Change in Inundated Fraction

Change in saturated extent 
between day 100 and day 143, 
year 1995, given
by JERS open water 
classification (a) and process-
based modeling framework (b). 
Blue pixels in (a) contained open 
water on day 143 but not day
100. Red pixels contained open 
water on day 100 but not day 
143. In panel (b), blue pixels had 
water table depth shallower than 
40 cm below the surface on day 
143 and deeper than 40 cm below 
the surface on day 100. Pixel size 
is 30 arc seconds. There is some 
correlation between simulated 
and observed saturation, but the 
model prediction could be
improved by calibration with 
respect to the remote sensing 
observations.Change in “Saturated” Pixels
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Ground reference data layer for Alaska (composite of NWI and AGDC 
databases). Although all classes shown in the legend are present in 
this ground reference set, some of them have a small number of pixels 
and are not visible at the resolution scale of this figure.   

Ground Reference Data
Alaska Wetlands Map Derived from L-band JERS-1 SAR Mosaics

Whitcomb, Moghaddam, McDonald, Kellndorfer, and Podest, 
2008 (in review).

Alaska Wetlands Map
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open 
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Data layers employed include maps of wetlands ground 
reference data, DEM, JERS-based open water maps, 
SAR acquisition date, image texture, proximity to water 
map.

Example Input Data Layers

Open Water Mapping Supervised Unsupervised

Yukon-Kuskokwim Delta

Kuparuk River

80 km

80 km

Within the 6400 km2 region of the Kuparuk River, the supervised classification maps 14.5% of the 
landscape as open water, whereas the unsupervised technique shows 21.4% as open water. Within 
the Yukon-Kuskokwim Delta region, 16.5% and 15.0% are mapped as open water by the 
supervised and unsupervised techniques, respectively.

Supervised Classification Unsupervised Classification

Alaska 100m JERS-1 Mosaic Alaska 300m USGS DEM

The Alaska JERS-1 mosaic
was assembled with
imagery from Summer 1998 
when surface water is in a 
liquid state and in some
cases at its maximum
throughout the year. The
USGS DEM was co-
registered to the JERS-1 
mosaic. It therefore has a 
resolution of 100m.  Two
classification approaches
were applied, a supervised
and an unsupervised
approach. The DEM was
used to mask out areas of
high topography were
shadowing was prevalent. 



Alaska- Assessment of Monthly Open Water Change
An assessment of seasonal open water
change was performed for Alaska. For
this purpose, monthly JERS-1 mosaics
were assembled at 100 meter resolution
from January through October 1998, as 
shown on the right. A USGS DEM of the
entire state was used to mask out areas of
complex topography were radar 
shadowing was confused as open water. 
An supervised decision-tree based
approach was applied. Open water
change analysis was performed across
areas with monthly overlaps where water
was in a liquid state.

January 1998 February 1998 March 1998 April 1998 May 1998

June 1998 July 1998 August 1998 September 1998 October 1998

Yukon Delta
An assessment in open
water change was
performed for the
months of June, July, 
and September. The
three images on the top
right show open water
(in blue) overlayed to the
JERS image. The images
on the bottom are 
comparisons of open
water change relative to
June. The table on the
right shows the percent
landcover change for
July and September
relative to June.
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Open Water Change
Relative to June

Dryer Wetter
Jul. 5.2% 3.3%
Sep. 3.5% 3.3%

Open water change
June/July

Open water change
June/September

Less open
water

More open
water

No change

North Slope
Open water
change was
performed for
the months of
June, July, 
and August. 
The top shows August 1998July 1998June 1998
open water overlayed on
the JERS image and the
bottom shows open
water change relative to
June.

Open water change
June/July

Open water change
June/August

Open Water Change
Relative to June

Dryer Wetter
Jul. 7.7% 2.7%
Aug. 6.9% 3.2%
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