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Environmental context Environmental context 

Background and ObjectivesBackground and Objectives
The spread of invasive plant species poses a significant threat to biological diversity and ecosystem functioning.  

Compared to terrestrial weeds, invasive aquatic vascular plants are more difficult to control and manage because 

they grow submerged in water, float on the water surface, or have inundated basal portions with emergent foliage 

and upper canopy.  Of particular concern in the Sacramento-San Joaquin Delta Region are Brazilian waterweed 

(Egeria densa) and water hyacinth (Eichhornia crassipes), which are well known for their ability to alter physical 

and biological functions of aquatic systems.  A fundamental need for invasive aquatic plant management is to 

develop a cost-effective, non-intrusive, large scale monitoring method. 

ObjectivesObjectives

• Produce annual maps of the areal distribution of emergent (e.g., tule), and floating (e.g., water hyacinth) species

• Produce annual maps of the areal distribution of submerged aquatic vegetation (lifeform classification) 

• Analysis of the change in areal coverage (change detection)

• Relate water quality with submerged aquatic vegetation distribution

• Assess habitat quality for threatened and endangered pelagic organisms
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Floating species
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Tule
Schoenoplectus acutus

Common reed
Phragmites spp.

Cattail
Typha latifolia

Blackberry
Rubus spp. 

Giant reed
Arundo donax

Pepperweed
Lepidium latifolium

Floating speciesFloating species

Water hyacinth
Eichhornia crassipes

Pennywort
Hydrocotyle ranunculoides

Primrose
Ludwigia peploides

Submerged species (SAV)Submerged species (SAV)

Coontail
Ceratophyllum demersum

American pondweed
Potamogeton nodosus

Sago
Stuckenia pectinata

Canadian waterweed
Elodea canadensis

Brazilian waterweed
Egeria densa

Carolina fanwort
Cabomba caroliniana

Curlyleaf pondweed
Potamogeton crispus

Eurasian watermilfoil
Myriophyllum spicatum

Aquatic plant communities Aquatic plant communities Challenges:Challenges:
Spatial extent:
Largest area 
(2600km2 waterways); 
Single consistent method;
High spatial resolution data set;
Good accuracy (>80%); 
Wall-to-wall sampling.

Temporal extent:
Multiple years (2003 - 2007); 
Ongoing management activities.

Spectral extent:
High dimensional data.

The Delta is a highly modified, imbricate, tidal system with multiple environmental conditions
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Pasternack et al. 2004. River Research & Applications, 20(2): 202-225
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Sensor Choice and Flight PlanningSensor Choice and Flight Planning
Challenges:
We need a large spatial extent at high spatial resolution
Hyperspectral data to discriminate spectrally similar species
Short-wave infrared bands (SWIR) are needed to perform atmospheric correction and differentiating plants with a column of water from those at the surface

Solutions: 
Air-borne hyperspectral sensors (e.g. AVIRIS, Hymap and SpecTIR) are the only sensors that meet both the spectral and spatial resolution requirements.
We acquired 64-67 flightlines each year collected from HyVista’s Hymap sensor, which has 3m ground resolution and 128 bands from 0.45 µm to 2.5 µm

Challenges: 
Specular reflection from water surface
Depth of water column above targets affects signal

Solutions:
Image acquisition during the late morning and early afternoon avoids specular reflection
Image acquisition during low tide minimizes the depth of the water column over submerged plants
Image acquisition in low wind conditions minimizes speckling caused by specular reflection off of waves
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Specular reflection over E. densa Turbid water column over E. densa

Processing and analysisProcessing and analysis
Challenges:
Our system (and classification 
effort) has both aquatic and 
terrestrial components
No vendor currently performs 
atmospheric corrections designed 
for water

Challenges:
Vendor provided geometric corrections to aerial imagery are 
usually +/- 2-5 pixels off, even after manual image-to-image 
georegistration

Solutions:
Joseph Boardman’s orthorectification software has resulted 
in +/- 1 pixel misregistration errors using approximately 50% 
of the original image-to-image tie points that a standard 
polynomial warp would require
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• Assess relationship between climate and species abundance using time-series

• Relate management activities with invasive species distributions

• Relate invasive species distribution trends with habitat quality
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ClassificationClassification

Challenges:
Submerged spectral signature is highly dependent on the local water conditions
Tree shadows cast on water are confused with submerged species

Solutions:
Submerged species were distinguished from water and turbid water using chlorophyll features
Tree crowns shade were distinguished from SAV by LiDAR and ray-tracing techniques
Submerged species at surface easily distinguished from water
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Giant reed

Cattail
Common reed
Tule

WBI    R/G NDVI   SISWI   NDWI

Giant reed (red)

Cattail (green)

Common reed (dark blue)

Tule (yellow)

Challenges:
Spectral signatures similar to submerged species

Solutions:
Emergent species identified using red/green ratio
Merge LiDAR with Hyperspectral to improve classification

Challenges: 
Water hyacinth is spectrally similar to co-occurring floating and emergent species and sunlit portions of tree crowns
Water hyacinth has multiple phenologies at any acquisition time

Solutions:
Application of decision trees with multiple inputs (SAM, LSU, continuum removal, indexes, band averages, etc.)  
Training data collected for all common species and their phenologic stages  
Sunlit tree crowns were distinguished from floating vegetation by LiDAR and height

Pennywort (yellow) Water Hyacinth (light green)

Submerged species

Remote sensing of aquatic vegetation requires:Remote sensing of aquatic vegetation requires:
• High spatial and spectral resolution imagery, collected at specific times (tidal and 

sun angle)  
• Classification must account for varying water conditions (for SAV), confounding 

factors (tree canopy), phenological heterogeneity, and dynamics of the system
• Multiple inputs considered simultaneously, and large training and testing data sets
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Solutions:
Training data for classifiers and spectral unmixing 
algorithms must be extracted from the images themselves.  
Field spectra for submerged cover classes do not match in-
scene spectra
Investigate TAFKAA and radiative transfer models (e.g., 
Hydrolight, Biopti)


