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The use of environmental datasets related to CO2 flux in a geostatistical in-
version allows the recovered fluxes to exhibit more realistic flux variability 
than may be visible in the atmospheric CO2 concentration measurements in 
the limited tower network.  They may also help to lower a posteriori uncer-
tainty on the flux estimates due to a better deterministic model of the trend 
of the flux distribution within the inversion.

This study takes advantage of high spatial and temporal resolution environ-
mental datasets available over North America from remote-sensing instru-
ments such as MODIS and AMSR, air quality measurements and socioeco-
nomic inventories related to emissions, and agricultural and forest inventory 
data.  

Both criterion-based and hypothesis testing variable selection methods are 
applied in order to select the combination of variables that best explain flux 
variability as seen through the atmospheric measurements for ultimate use 
in the inversion.

A second inversion will also test the significance of biospheric model output, 
high-resolution fossil fuel inventories, i.e. Vulcan (Gurney et al., 2006) and 
climatological model output as seen through the limited atmospheric data.

Case Flux Resolution Concentration Averaging
1 8-day average da ily
2 8-day average 3-hourly
3 da ily average da ily
4 da ily average 3-hourly
5 8-day average, 3 -hour b locks 3-hourly

Preliminary results from Case 1 for June 1-8, 2004 are shown below.  For 
this plot, pseudo-data was generated using 8-day average CASA fluxes:

A posteriori fluxes

 

 

−2 −1 0 1

“True” CASA Fluxes 

 

 

−2 −1 0 1

μmol*m-2*s-1

List of possible variables for inclusion in North American inversion
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Goal and Scope

June 2004 Pseudodata Study

Geostatistical Inverse Modeling

Tall Tower Measurements and Transport Model

Auxiliary Environmental Variables

• Shown below are a posteriori fluxes from CarbonTracker (Peters 
et al., 2007) transported forward to three heights on the LEF 
tower (30m, 122m, 396m) compared with actual measurements 
at those heights.
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*’s represent measurement locations used in study
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•  This ongoing project uses continuous atmospheric measurements from 9 tall 
towers and auxiliary variables in a geostatistical inverse modeling framework to 
quantify North American surface fluxes of carbon dioxide at 1°x1° resolution and 
daily, 8-day and monthly time-scales.

The geostatistical approach to inverse modeling is a Bayesian approach in which the 
prior probability density function is based on an assumed form for the spatial and/or 
temporal correlation of the surface fluxes to be estimated (Michalak et al. 2004).  
This differs from the traditional Bayesian approaches, where the prior information is 
in the form of initial surface flux estimates. 

In the geostatistical approach, the prior flux estimate is replaced by a model of the 
mean of the flux distribution, and the criterion of remaining close to a prior flux esti-
mate is replaced by a criterion of preserving a spatial and/or temporal correlation in 
the flux distribution: Mathematically,

where  z :  Observation vector
   H : Transport matrix
   s : Surface flux distribution
   R : Model-data mismatch error covariance matrix
   X :  Matrix that defines the model of the mean.

     For example, for a constant mean:

     For a system where the mean of the fluxes is 
     expected to have a linear trend with an
         additional variable t (e.g. LAI or FPAR):
 

   β : Unknown drift parameters to be estimated along with s
   Q : Prior flux covariance matrix based on selected model (a full matrix)

Key differences relative to classical Bayesian approach:

•  Parameters of the model of the mean Xβ are estimated as part of the inversion

•  Auxiliary data can be incorporated into Xβ and its significance can be evaluated 
using the Variance Ratio Test (Kitanidis 1997)

•  The prior covariance matrix Q defines spatial and/or temporal correlations which 
are optimized using Restricted Maximum Likelihood (Kitanidis, 1995). 

Testing is underway to evaluate the optimal flux resolution and concentration 
data averaging in order to estimate an 8-day average flux with minimal bias and 
reasonable uncertainty estimates.  Pseudo-data for June 2004 has been gener-
ated using CASA GFEDv2 estimates of NEE (Peters et al., 2007), originally used 
as a priori fluxes in CarbonTracker, and high-resolution sensitivity matrices de-
rived from STILT/WRF.  

The following inversions will be performed, and results will be compared using 
three diagnostics (Root Mean Squared Error, Average Uncertainty, and % of 
“True” Fluxes that fall within the 95% Confidence Intervals):

•  High resolution meteorological fields have been generated 
using the Weather Research and Forecasting (WRF) 
model nested down to high resolution (~2 km) over the tall 
tower target regions.

•  Continuous data from the NOAA Tall Tower network are the primary 
source of atmospheric CO2 observations for this work.  The tall towers 
are the WLEF tower in Park Falls, WI, the WKT tower in Moody, TX, 
and the AMT tower in Argyle, ME. 

•  Data from other eddy covariance towers that are equipped to 
provide calibrated CO2 mixing ratio measurements, as well as 
flask measurements in under-represented regions, are included 
when available.  
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•  An example of the information provided by STILT/WRF is 
presented in the figure below, which represents the average 
sensitivity of measurements at the 9 tower locations in June 
2004 to upstream fluxes in the source regions.

• The Stochastic Time-Inverted Lagrangian Transport (STILT) model, 
an atmospheric particle-tracking model run backwards in time, is 
used to track the influence of surface fluxes on available 
atmospheric measurements. 

 •  Flux magnitudes are estimated without relying on prior flux estimates, and the 
approach accounts for uncertainties and covariances associated with 
measurement and transport errors and flux distributions.

 •  Study will be conducted in three parts where first two parts use pseudo-data to 
evaluate the optimal flux resolution and data averaging to minimize bias, and the 
ability of atmospheric data to infer realistic relationships between auxiliary 
variables and flux.  The third part applies results from the first two parts using 
actual concentration data.

•  Estimated fluxes include 
both biospheric and 
anthropogenic 
components, in order to 
avoid aliasing fossil fuel 
inventory errors onto 
biospheric fluxes.

•  The influence of auxiliary 
environmental data from 
remote sensing 
instruments, agricultural 
and forest inventories, 
air quality 
measurements and other 
sources are evaluated 

as part of the inversion, which 
provides process-based 
understanding of flux variations and 
also helps to recover grid-scale 
variability in the recovered fluxes.  

• An analysis of the ability of STILT/WRF to reproduce vertical 
gradients at the WLEF tower is currently underway.  Night-time 
data from the shorter towers may be excluded from the inversion, 
or assigned a higher model-data mismatch, given the results of 
this analysis.


