Estimating Biomass Burning Organic and Black Carbon Particulate Matter Emissions Using Fire Radiative Power
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Estimating fire emissions using the
integrated fire radiative power (FRP),
or fire radiative energy (FRE), released
during combustion was first developed
by Kaufman et al. (1996) and later
refined by Wooster et al. (2002, 2005).
FRE can be used to estimate the total
fuel combusted (Fig. 2) and, given an
emission coefficient (E,), the total
emissions released (Eq. 1).

Emission = E, [FRP dt  (Eq. 1)
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Curve fitting of SEVIRI geostationary FRP retrievals™ with a Gaussian
function (Eq. 2) was used to calculate parameters to account for MODIS FRP
diurnal cycle. 15 minute FRP observations made by SEVIRI were placed in
hourly bins for the month and normalized by the number of days contributing
to each hour (0-23). Figure 3 is for a 10°x10° site centered at 5°N 15°E (n ~

2.5E+05)
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Where t is time, d is the lower
boundary of FRP retrievals, a
is the maximum FRP value, b
is the hour corresponding with
a, and c is the sigma, or full
width at half maximum
(FWHM).

Figure 3: SEVIRI observations, binned in hourly increments, fitted using

Gaussian function.

Figure 2: Biomass combustion rate

OCBC Emission Data

Figure 4 shows an example of the Terra/Aqua monthly FRP observations (2003-
2006) from the same site as Figure 3. The relationship between Terra/Aqua ratios
and each parameter (b, ¢, & d) from SEVIRI curves was calculated for multiple
test sites (e.g. Fig. 5-7). Modeled parameters were used to estimate the diurnal
cycle of FRP for Terra using Equation 2 and FRP values for each site were then

integrated to retrieve FRE (Fig. 8).

To retrieve organic and black carbon
particulate matter emissions from
biomass burning a combination of
satellite and ground-based observations,
along with chemical transport modeling,
was used in concert with forward and
inverse modeling (Dubovik et al., 2007).
This data was used to estimate the
emission coefficient using FRP
retrievals.
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Figure 1: OCBC 2001

Figure 4: Terra & Aqua FRP for 48 months
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Figure 6: ¢ parameter vs. T/A ratio

Figure 7: d parameter vs. T/A ratio

Comparison of
FRE estimates
between MODIS
and SEVIRI
over southern
Africa were quite
close: 893x10°
MJ versus
921x10° MJ,
respectively.

Figure 8: FRE (MJ/m?/year) total for 2001.

*SEVIRI data courtesy of Gareth
Roberts, Kings College, UK.

Emission coefficients (E, grams OCBC
emitted/MJ FRE) were calculated using a
power function. First the relationship
between FRE and the OCBC product was
examined for multiple test sites (e.g. Fig.
9). The emission coefficient (slope) for
each site was then plotted against the mean
annual FRP within the site (Table 1),
yielding the power function (Fig. 10).
Plotting the power function-predicted E,
against the observed E_ demonstrates the
strength of the function (Fig 11). Figure
12 shows a map of the calculated emission
coefficients.
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Figure 9: Analysis of relationship within Asian test site
(10x10) between FRE (MJ) and OCBC (g)
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Figure 10: Modeled power function based on
relationship between mean FRP and E,. The latter was
retrieved from analysis of relationship between FRE and
OCBC within each site.

Figure 11: Predicted versus Observed emission
coefficients. Observed E, were retrieved from the slope
of the relationship between estimated FRE and the
OCBC inversion product for several test sites.
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Figure 12: OCBC emission coefficients calculated using
power function and mean annual FRP.

Results

OCBC emission from biomass
burning was calculated using
Equation 1.

We calculated 72.6Tg globally for
2001, which is close to the 63Tg
reported by Chin et al. (2007) , but
well above van der Werf et al.’s
(2006) estimate of 23Tg.

Comparison of the temporal cycle of
emissions between our estimate and
the OCBC inversion product were

ocec 1)

very close (e.g. Fig. 14)

Figure 13: Total OCBC emissions estimated from fire
for 2001.

Figure 14: Weekly emission trajectory comparisons for 2

sample test sites between FRE estimated OCBC and OCBC

inversion estimates using GOCART.
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