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…starting with plants, the base of primary productivity,	

 and linking to other trophic levels	
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Plant chemistry and structure	


Remote sensing of canopy chemistry
Susan L. Ustin1
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O ne of the major uncertainties in
predicting climate change
comes from a full accounting of
carbon-cycle feedbacks, which

roughly double physical feedbacks (1, 2).
Most of this uncertainty is a result of the
many pathways and time scales at which
ecosystems interact with the climate sys-
tem and how these will respond to change
(3). The relationship between leaf nitro-
gen and the carbon cycle is key to many
ecosystem processes because photosyn-
thesis provides the energy and carbon-
cycle molecules for growth and repro-
duction (4–7) and decomposition for
nutrient cycling (7, 8). Ecologists have
long recognized that nitrogen was the most
limited nutrient for plant growth (9, 10).
Quantifying changes in canopy nitrogen
content provides direct information about
ecosystem functioning and a method to
detect and monitor changes in response to
climate forcing (9, 10); thus, it has been
a long-term objective for airborne and
spaceborne imaging spectroscopy (11–13).
Several papers have reported direct de-
tection of canopy nitrogen from airborne
imaging spectrometers (14–17). Ollinger
(18) argues that selective pressure on plant
competition for light, water, and nutrients
should result in suites of biochemical
and structural traits that integrate their
functional strategies. Thus, structural
traits affecting light scattering “over scales
ranging from cells to canopies” (18) will be
convergent with their biochemical traits.
Knyazikhin et al. (19) explicitly test
whether assumptions that canopy structure
can be ignored in quantifying biochemical
composition with a detailed analysis of
the physical processes of photon scattering
from leaves and plant canopies. Although
there is recognition of the importance
of multiple scattering (20), particularly
in the near infrared, where plant com-
pounds do not display strong absorption
features (21–23), it has not been possible
to quantify it at the canopy scale. The re-
port by Knyazikhin et al. (19) is unique
in being a full attempt at modeling spectral
absorptions and scattering at both leaf and
canopy scales (Fig. 1).
Given understanding of ecophysiologi-

cal controls on photosynthesis that dem-
onstrate the significance of nitrogen on
controlling productivity, it is not surprising
that an early goal for imaging spectroscopy
(24) recognized the importance of quan-
tifying declining photosynthetic capacity.
Identification of different plant materials,
especially related to photosynthetic func-

tion, was an objective of airborne imaging
spectrometry since its beginnings (11, 25,
26). Early laboratory studies on estimating
nitrogen content with near infrared spec-
troscopy provided evidence that nitrogen
could be quantified through spectroscopy,
but measurements were restricted to
ground dry foliage (27–29). Direct detec-
tion of canopy nitrogen from remote
sensing observations have been reported
by others since (12, 16, 29), but results
have been questioned because spectral
changes generally also corresponded to
changes in land cover between conifer and
broadleaf forests.
The first National Aeronautics and

Space Administration (NASA) Airborne
Imaging Spectrometer (AIS-1), flown from
1983 to 1986, included only the 0.9- to
2.1-μm reflected infrared spectrum and the
AIS-2 measured from 0.8 to 2.4 μm (11),
thus the emphasis for detecting chemistry
shifted from pigments to canopy water
and nitrogen because their absorption
features occur in the reflected infrared.
Lignin content was mapped from AIS-1
data over Blackhawk Island, WI, which
allowed estimates of soil nitrogen avail-
ability by correlating nitrogen mineraliza-
tion with foliage lignin content (12). These
results were corroborated (28, 29), al-
though different studies identified differ-
ent spectral bands as significant in multiple
linear regression predictions. At this time,
NASA began to address the full costs of
the Earth Observing System satellite pro-
gram and the High Spectral Resolution
Imaging Spectrometer (HIRIS), one of the
original NASA facility instruments for
the Terra platform, was being considered
for deselection because of its cost and
uncertainty of its scientific benefits to the
climate mission. However, there were
concerns that high atmospheric CO2 con-
centrations could lead to increased C:N
ratios and associated declining pro-

ductivity because of higher lignin content
in plant residues (30, 31). This concern
about future soil nitrogen availability
provided a unique climate role that only
HIRIS, with its contiguous narrow spectral
bands across the visible and shortwave in-
frared region, was capable of detecting.
NASA established the Accelerated Can-
opy Chemistry Program (ACCP) in 1991–
1992 to determine whether there was
a sound theoretical and empirical basis for
estimating nitrogen and lignin concen-
trations in ecosystem canopies from re-
mote sensing data (13). Although NASA
ultimately deselected HIRIS, this program
led to numerous empirical studies over
the past two decades (32) to identify ni-
trogen and lignin from airborne Advanced
Visible Infrared Imaging Spectrometer
(AVIRIS) data (e.g., refs. 13, 33, and 34).
Despite concerns, the significance of
structural contributions to measurements
of lignin and nitrogen, predictions were
never explicitly tested before Knyazikhin
et al. (19).
Only a few leaf and canopy radiative

transfer models have been developed.
Only the LIBERTY (Leaf Incorporating
Biochemistry Exhibiting Reflectance and
Transmittance Yields) radiative transfer
model, developed to estimate the optical
properties of both dried and fresh conifer
needles (35), specifically includes nitrogen,
lignin, and cellulose. LEAFMOD, the
Ganapol et al. (36) model, addressed in-
ternal leaf scattering, which they recog-
nized must be fully modeled to define
additional biochemical parameters. How-
ever, both LIBERTY and LEAFMOD
have had limited distribution compared
with the PROSPECT leaf optical proper-
ties model (37). After the ACCP program,
nitrogen and lignin were introduced into
the PROSPECT model (38, 39), but were
later deleted for the more general “dry
matter” because results were inconsistent
(40, 41). More recently (42) the combined
PROSPECT-SAIL (PROSAIL) leaf and
canopy radiative transfer models have
been used to predict canopy nitrogen by
assuming a constant stoichiometry to
chlorophyll. Bousquet et al. (43) modified
PROSPECT to include the directional ef-
fects of leaf specular and diffuse re-
flectance, representing a start to address

Fig. 1. AVIRIS spectra of mixed live-oak forest
showing seasonal change. Wavelength region where
significant plant absorptions occur are indicated.
Multiple scattering dominates the near-infrared re-
gion between 0.7 and 1.5 μm.
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Herbaceous	  diversity	  –	  Cedar	  Creek	  30-year Biodiversity Experiment at 
Cedar Creek	






Productivity (NDVI) ���
varies with species richness over time	
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Some	  unpublished	  data	  are	  
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30-year Biodiversity Experiment at 
Cedar Creek	
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Some functional traits vary with 
vegetation diversity more than others	
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vegetation biodiversity	
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How well can we detect the phylogenetic 
diversity of plants on Earth?	




Shared evolutionary history and niche 
conservatism cause traits to be predictable 

from phylogeny (to some degree)	
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Phylogenetic distribution of leaf spectra	
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K statistic for spectra PCO1
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Strong phylogenetic signal in spectral data	




Oak Species PLS−DA: Calibration Kappa

calKappaVec

Fr
eq
ue
nc
y

0.35 0.40 0.45 0.50 0.55 0.60

0
10

20
30

40

Oak Species PLS−DA: PLS−DA Validation Kappa

valKappaVec

Fr
eq
ue
nc
y

0.35 0.40 0.45 0.50 0.55 0.60

0
10

30
50

Partial Least Squares - Discriminant Analysis ���
Oak Species Spectra	
Oak Species PLS−DA: Calibration Kappa

calKappaVec

Fr
eq
ue
nc
y

0.35 0.40 0.45 0.50 0.55 0.60

0
10

20
30

40

Oak Species PLS−DA: PLS−DA Validation Kappa

valKappaVec

Fr
eq
ue
nc
y

0.35 0.40 0.45 0.50 0.55 0.60

0
10

30
50

Calibration (Kappa Statistic)	


Validation (Kappa Statistic)	




Rainfall	  paTerns	  
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We are able to detect differences among 
populations of the same species in watered and 

unwatered common environments using 
spectrally derived traits	
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