Linking remotely sensed optical diversity to genetic,
phylogenetic and functional diversity to predict ecosystem
processes
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How well can we remotely and spectrally
detect the diversity of plants on Earth?

Needed: Integration of remote and in situ biodiversity measurements



Global Biodiversity Observatory

Remotely observed functional traits

Integration
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* Detecting plant diversity, chemistry and
function in terrestrial systems

— Diversity experiments

— Naturally assembled communities

* Locating plant taxa in the tree of life using
hyperspectral data
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Start with manipulated diversity
experiments in prairie and forest




Productivity (g m-2 yr-1)

Diversity begets productivity
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We can si

gnificantly predict diversity from AVIRIS data using PLSR

...but functional and phylogenetic diversity are better predicted

measured

than species richness
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Biomass is predicted better than
diversity in this system
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Multilevel models show biomass and diversity are most
strongly detected in different parts of the spectrum
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Leaf chemistry influences root and litter chemistry ->
affects ease of degradation and consumption by microbes
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Above ground productivity influences how
much carbon is available below ground
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aboveground Plant community structure and function

belowground

Soil Organic Matter Quantity and Quality

microbial community structure and function



Remotely sensed above ground traits/
chemistry predicts below ground processes
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Remotely sensed above ground traits/
chemistry predicts below ground processes
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How well can we simulate the community
from leaves?
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Testing models in naturally
assembled grasslands
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Locating taxa in the tree of life using
spectra




Spectral properties differ among taxa -
We suspect that even small differences can differentiate

taxa given the high dimensionality of the data
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Hypothesis

The hierarchical organization of plant diversity
that results from evolutionary history provides a
framework for predicting spectral similarity of
organismes.




Four populations planted in common gardens in Honduras and Costa Rica

Mexico (MX)
Belize (BZ)
Honduras (HN)
Costa Rica (CR)

Nuclear SSRs




Many species within the oak genus grown in a
common greenhouse environment
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Quercus agrifolia

Quercus wislizeni

RADseq
phylogeny Guercus igra

Quercus hemisphaerica
Quercus myrtifolia
Quercus acutifolia
Quercus castanea

Quercus crassipes
Quercus chrysolepis

Quercus oleoides

Quercus virginiana

Quercus chapmanii

Quercus rugosa
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Optical and remote detection of

funCtiOnal traits

| -il 5 f'v ; - t y
e =)
Phll ;é \/ 6%

Townsend li

#M A e

ctl'l”‘mM\ /\/V\A/\\ /M

Nmabb

AnMA A A

A4 A M
WAAAA—

)
-
)

—

4=
)
O
O

©
)

N

©
-
O

S
c
O

-

wn

-V'm(m:

900 . _
Wavelength (nm)




PLS-DA validation
models for traits and
spectra

Assignment accuracy —>

Populations

1.0

M Traite

Species

greater accuracy in
classification with
increasing hierarchical
levels of biological
organization




PLS-DA validation 2 Populations
models for traits and
spectra

1.0

Species

Spectra always
discriminate taxa
with higher
accuracy than

Assignment accuracy —>
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Here is why.... Traits
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* Accuracy of classifying
biological units increases
through the hierarchy of plant
diversity from <
species <

(.... in this system)

* Full spectra provide greater wreces
accuracy than tralts derlved Populations

from spectra for classifying taxa

Individuals

* demonstrates potential to use

the tree of life to remotely
detect taxa
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Place an unknown leaf
spectrum within the plant tree
of life
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The probability of adding new tip s to an ancestral node a; is given by a gaussian where:
The data AR the new tip’s spectrum, the mean is the ancestral spectrum g, and the
variance is given by the brownian motion rate ¢ times the time of divergence ¢/s,a/.



What is the probability that an unknown spectrum falls within a
given clade?

Zf Pr (]7 0-276|TN—17Y)

Z;F Pr (Za 0-275|TN—17Y)



Once we know where a spectrum fits in the tree of life,
the taxonomic deciphering can be further circumscribed
with species distribution data
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