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Overview of Regional Method 
•Apply the Stochastic Time-Inverted Lagrangian Transport 
(STILT) model driven by meteorological fields from the 
Weather Research and Forecasting (WRF) model to generate 
surface influence functions, “footprints”, for ASCENDS 
observations.  
 

•The “footprints” (or adjoint) express the sensitivity of 
ASCENDS column CO2 observations to surface fluxes in the 
upwind source regions. 
 

•Footprints enable the computation of posterior flux error 
reductions resulting from the inclusion of ASCENDS 
observations. 
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ASCENDS Candidate CO2 Wavelengths 
 
3 Concepts: 
2.05μm  [Caron and Durand, 2009] 

1.57 μm 
• 10pm offset 
• 3 & 10pm offsets 

 
 

2.05μm region has 
greatest sensitivity  
to near surface CO2 

BUT… 
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ASCENDS Candidate CO2 Wavelengths 

2.05μm region 
has largest 
measurement 
errors 

Measurement Errors for 1.57µm vs 2.05µm 



WRF-STILT 
WRF [Skamarock and Klemp, 2008] :   

•Mesoscale meteorological model provides transport fields 
 

STILT [Lin et al., 2003] :   
•A Lagrangian (airmass-following) transport model allowing backward 
in time transport simulations (receptor-oriented). 
•Minimizes numerical diffusion present in Eulerian models [Chevallier 
et al., 2007]. 
•Efficient way to calculate adjoint (“footprint”) at high spatial and 
temporal resolution. 
 

WRF-STILT Coupling [Nehrkorn et al., 2010] :  
•Realistic treatment of convective fluxes. 
•Good mass conservation properties. 
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WRF-STILT Application 
Identify Receptor List 
•Receptors – represent ASCENDS observation locations 
•Receptor selection performed using CALIPSO orbital data 
over North America 

•Optical depth < 0.7 
•Surface detection frequency > 0 
•~6,000 unique locations per day for Jan, Apr, Jul, and Oct 2007 
•Expand receptor list to 15 vertical levels (0.5 – 14.5km) 
 

Trajectory Simulations 
•WRF-STILT simulates release of 500 particles at each of the 
15 levels for each receptor. 
•Transport modeled backwards in time for 10 days. 
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WRF-STILT Application 
STILT  
•Revision 640 (www.stilt-model.org) 
 
 
 
 
WRF  
•Version 2.2 
•40km resolution 
•NARR 32km grids  
    for IC and BC 
•30 hr forecasts, reinitialized every 24 hrs with 6 hrs spin-up. 
•Hourly output fields fed to STILT. 
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Option Description 
Land-surface Noah land-surface model with Monin-Obukov surface layer 
PBL package Yongsei University (YSU) scheme 
LW radiation RRTM 
SW radiation Goddard 
Microphysics Lin et al. 
Convection Grell-Devenyi  
Nudging u,v,T,q at all levels above PBL, every 3 hours, 1 hour relaxation time 
Time stepping 3rd order Runge-Kutta 
Advection 5th order horizontal, 3rd order vertical 

positive definite advection for moisture and scalars 
Diffusion 2nd order horizontal diffusion using Smagorinsky first-order closure 
Damping No upper level or vertical velocity damping; default values for divergence and 

external model damping 

WRF Physics and Numerics 

http://www.stilt-model.org/�


Footprint 
•Quantitatively describes  how much of total mixing ratio at a receptor 
comes from surface fluxes originating in upwind regions 

•Generated by WRF-STILT 

•Units:  mixing ratio per unit flux 

•Domain:  11-65N, 50-170W 

•Resolution:  1 deg horizontal    &    3 hourly, 10 days back 
•One unique location has 15 footprint maps – one for each vertical level 
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Vertically Integrated Footprint 
•Quantitatively describes  how much of column mixing ratio comes from 
surface fluxes originating in upwind regions. 

•Convolve 15 levels of footprint maps for each receptor with lidar weighting 
functions.  

 



Vertically Integrated Footprints 
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log (footprint)      [ppmv/(μmol/m2/s)] 

2.05μm 
 

1.57μm, 3pm offset 
 

1.57μm, 10pm offset 
 

receptor 
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Formally Relate Footprint and Column CO2 
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 = a priori anthropogenic flux

 = prior flux for vegetation type n

 = multiplicative anthropogenic flux factor

 = additive flux factor for vegetation type n
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Simplifies to 



Kanthro   &   Kn 
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Anthropogenic (Kanthro) 
•Calculate using fluxes from the 
Vulcan Project anthropogenic 
emission inventory [Gurney et al., 2009] 

 
 
 

Vegetative (Kn) 
•Calculate based on 11 vegetation 
types defined in in the Vegetation 
Photosynthesis and Respiration 
Model (VPRM) [Mahadevan et al., 2008] 

11 Vegetation Types Fraction Coverage 



A Posteriori CO2 Flux Error 
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Apply integrated footprints Kn and Kanthro to calculate a 
posteriori CO2 flux error due to introduction of ASCENDS 
observations: 



A Priori Flux Errors      
Vegetative  
•Apply            calculated by Matross [2006] to Jan & Jul 2007 

•Calculated for 11 vegetation types in VPRM 
•Off diagonal elements assumed 0 
•Diagonal elements estimated for summer 2004 
 
 

Anthropogenic 
•Assume monthly mean a priori fractional error = 0.5 (overly 
pessimistic for Vulcan?) 
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•Best case scenario 
•Consider contributions from random instrument measurement errors 
•Exclude contributions from:   atmospheric transport 
      lateral boundary condition 
      fossil fuel signal                   [Gerbig et al., 2003] 

•Calculation 
•Diagonal matrix computed using reference value at Railroad Valley, 
NV (RRV) 
 
 
 
 

•Surface reflectivity from MODIS backscatter 
•Optical depth from CALIPSO data 

Measurement Errors 
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Measurement Errors 
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1.57µm 

2.05µm 

January July 

Ratio: 
2.05µm/1.57µm 



Baseline Results 
1.) Types with large a 
priori have large 
posterior error 
reduction on small 
timescale 
 

2.) Types with small 
fractional coverage 
have smaller 
reductions 
 

3.) 3pm offset does 
little to improve upon 
1.57μm at 10 pm offset 
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Baseline Results 
4.) Greater flux error 
reductions for 2.05μm 
vs 1.57μm lines, 
particularly in January 
 

5.) Modest increases in 
measurement error for 
2.05μm line (blue) 
mask error reduction 
differences between 
lines  
 

6) Flux error reductions 
are larger in July than 
January due to 
seasonality of 
measurement errors 
and regardless of 
weighting function 
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Results – Impact of Prior 
1.) Most “prior-less” 
results converge with 
prior constraint 
counterparts 
 
 

2.) Exceptions are 
those types with 
smaller fractional 
coverage. 
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Results – Increasing 
Measurement Error 

At RRV  
1.) Much smaller posterior 
error reductions as 
measurement error 
increased 
 
2) Larger posterior error 
reduction differences at 
2.5ppmv 
 
For larger measurement 
errors, up to ~1.5-3.5ppmv 
the advantage of a lower-
peaking weighting function 
is more important to 
constraining fluxes  

0.5ppmv 
 

2.5ppmv 
 



Results – Increasing 
Measurement Error 

At RRV  
3.) As the measurement 
error increases, the prior 
constraint begins to 
dominate, particularly 
within the first 5 to 10 
days, and impacting 
January more than July 

0.5ppmv 
 

2.5ppmv 
 



Results – Increasing Measurement Error at RRV 

4) As expected, 
measurement error 
of 0.5ppmv achieves 
greatest posterior 
error reduction 
 
5) Nonlinear 
behavior exhibited by 
most types except 
shrub and grass 
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Posterior Error Reduction After 1 Week 



Conclusions 
Baseline  
1.) Types with large a priori have large posterior error reduction on small timescale 
2.) Types with small fractional coverage have smaller reductions 
3.) 3pm offset does little to improve upon 1.57μm at 10 pm offset 
4.) Greater flux error reductions for 2.05μm vs 1.57μm lines, particularly in January but 
modest increases in measurement error for 2.05μm line mask error reduction differences 
between lines  
5.) Flux error reductions are larger in July than January due to seasonality of 
measurement errors and regardless of weighting function 
 

Prior Constraint 
6.) The prior constraint has a limited impact on results at measurement error of 0.5 ppmv 
at RRV 
 

Measurement Error 
7.) As measurement error increases, there is a nonlinear decrease in reduction of 
posterior error 
8.)For larger measurement errors, up to ~1.5-3.5ppmv the advantage of a lower-peaking 
weighting function is more important to constraining fluxes 
9.) As the measurement error increases, the prior constraint begins to dominate, 
particularly within the first 5 to 10 days, and impacting January more than July 

© Atmospheric and Environmental Research, Inc. (AER), 2012. 



Future 
•The footprint library provides valuable input to cost-benefit analyses of 
ground-based versus space-borne approaches to Measurement, Reporting, 
and Verification (MRV). 
 

•The footprint library can be utilized in many other applications because 
footprint maps are not dependent on: 

•vertical weighting function or averaging kernel 
•measurement random errors 
•a priori flux errors 
•surface cover type and inversion approach 
•molecular species (i.e., footprints can be applied to gases other than CO2).  
 

•The footprint library underlying this study has been computed on a daily 
basis for January, April, July, and October 2007 and is available to 
researchers with access to Pleiades (please contact jel@aer.com for more 
information). 
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